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Preface 20 

To determine how the Rio Grande Silvery Minnow (RGSM) population of the Middle 21 

Rio Grande (MRG) responds to interannual hydrologic variation, the U.S. Fish and Wildlife 22 

Service conducted a hydrobiological analysis (HBO) as part of a Biological Opinion regarding 23 

management of water resources (U.S. Fish and Wildlife Service 2016). These analyses 24 

determined RGSM populations correlate strongly with many hydrologic indices of the magnitude 25 

and duration of both high and low flows. An external review of the HBO identified several 26 

opportunities refining and expanding the analyses (Budy and Walsworth 2019), particularly 27 

focusing on improving the statistical appropriateness and biological realism of the models 28 

explored. Here, we incorporate many of the suggested changes based on collaborator and internal 29 

Reclamation review of that report to the HBO analyses to explore (1) how RGSM abundance in 30 

the MRG responds to changes in annual hydrologic conditions, (2) how RGSM relationships 31 

with hydrologic conditions differ spatially in the MRG, and (3) what hydrologic conditions 32 

would need to be present for managers to expect to meet recovery thresholds. In the future, the 33 

results of these analyses can be used in the development of an adaptive management strategy 34 

aimed at managing the trade-offs between off-stream water use and conservation of the RGSM. 35 

  36 
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Executive Summary 37 

 Increasing water demand, water development, and on-going climate change have driven 38 

extensive changes to the hydrology, geomorphology and biology of arid-land rivers globally. As 39 

many native desert fishes have experienced dramatic declines, there is an increasing need to 40 

understand how annual hydrologic conditions affect the distribution and abundance of their 41 

populations. We analyzed the relationship between annual hydrologic conditions (i.e., spring 42 

high flows, summer drying) and the distribution and abundance of the endangered Rio Grande 43 

Silvery Minnow in the Middle Rio Grande. We fit a twenty-five year data set (1993-2017) of 44 

sampling site catch-per-unit-effort to hurdle models predicting both the presence and density of 45 

Rio Grande Silvery Minnow as a function of annual hydrologic metrics. Both presence and 46 

density were positively related to spring high flow magnitude and duration and negatively related 47 

to summer drying. Additionally, when we included a latent trend in the presence model 48 

component, we observed evidence suggesting the strong influence of an unobserved driver 49 

operating on a decadal scale periodicity, potentially representing regional climatic variation or 50 

spawner-recruit dynamics. The results of our simulation models suggest hydrologic conditions at 51 

or near the wettest observed in the data set would be required to produce sufficient Rio Grande 52 

Silvery Minnow to meet recovery goals (> 5 RGSM per 100m2) with 95% confidence in a single 53 

year in all reaches. As recovery goals require sustaining these higher densities, such large runoff 54 

events would need to recur across multiple years. However, the self-sustaining population target 55 

(> 1 RGSM per 100m2) is likely to be met at more modest flows near the median observed in the 56 

dataset. The results of these analyses both inform current management actions and can be used to 57 

explore alternative water management approaches in a simulation framework while considering 58 

trade-offs between recovery and other management goals. 59 
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 60 

 61 

Introduction 62 

Freshwater ecosystems are home to a disproportionate degree of global biodiversity. 63 

While freshwater habitats cover less than 1% of the Earth’s surface, they contain nearly 9.5% of 64 

the planet’s animal species (Dudgeon et al. 2006; Balian et al. 2008; Reid et al. 2019). However, 65 

freshwater biodiversity has also experienced a greater rate of decline than that of other biomes 66 

(Ricciardi and Rasmussen 1999; Sala et al. 2000; Reid et al. 2019). Rivers are frequently altered 67 

to reduce risks to human infrastructure and settlements (e.g., flood control), reduce temporal 68 

variation in water availability (e.g., storage), and derive additional benefits from the available 69 

water (e.g., irrigation water, hydroelectric power, creation of recreation opportunities). However, 70 

hydrologic alterations aimed at achieving social and economic goals often present substantial 71 

challenges to native aquatic biota (Poff et al. 1997; Olden and Poff 2005). As native biodiversity 72 

is increasingly valued by societies (e.g., U.S. Endangered Species Act, Canadian Species at Risk 73 

Act), counteracting the impacts of habitat alterations has become an important focus of research 74 

and management efforts (Soule 1985). However, for conservation efforts to be successful, we 75 

must identify the most limiting factors and the actions with the greatest potential benefit given 76 

logistical feasibility (e.g., Budy and Schaller 2007; Budy et al. 2015; Walsworth and Budy 2015; 77 

Mantyka-Pringle et al. 2016). 78 

Fishes native to desert rivers are particularly susceptible to the challenges presented by 79 

hydrologic alterations (Minckley and Deacon 1991; Olden and Poff 2005). Lacking sufficient 80 

precipitation, human settlements in arid climates frequently rely on diversions of water from 81 
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rivers for agriculture, and large storage or flood control dams are often constructed to reduce the 82 

uncertainty presented by flow variability within and among years, as well as mitigate flooding 83 

impacts. These modifications result in major changes to the hydrologic conditions of the river, 84 

which in turn can drive dramatic geomorphic and biological changes (Poff et al. 1997; Schmidt 85 

et al. 2001; Schmidt and Wilcock 2008). Storage and flood control dams reduce the magnitude 86 

and duration of spring runoff flows, limiting the availability of high flows responsible for the 87 

creation and maintenance of complex in stream habitats, as well as reducing lateral connectivity 88 

between channel and floodplain (Junk et al. 1989; Poff et al. 1997; Naiman et al. 2008). 89 

However, storage and flood control dams generally increase the magnitude of summer flows, as 90 

they release water stored during high flow periods during typically low flow periods. Water 91 

withdrawals can reduce the quantity and quality of in-stream habitats available to aquatic species 92 

(Xenopoulos et al. 2005; Benejam et al. 2010; Matthaei et al. 2010). As a result of these changes 93 

to the hydrology and physical habitat, most native desert fishes have experienced dramatic 94 

declines in range and abundance (Minckley and Deacon 1991; Olden and Poff 2005; Budy et al. 95 

2015).  96 

Once distributed in high densities and across nearly the entire extent of the Rio Grande, 97 

the Rio Grande Silvery Minnow (Hybognathus amarus; hereafter “RGSM”) is currently 98 

restricted to the 240 km of the Middle Rio Grande (New Mexico, USA; hereafter “MRG”; 99 

Cowley 2006).  The MRG has a long history of human settlement and alteration, and large-scale 100 

modifications to habitat and flow throughout the watershed have led to major changes in the fish 101 

community (Calamusso and Rinne 1999; Cowley 2006). The Rio Grande Silvery Minnow has 102 

declined by an estimated 95% in range and abundance (Bestgen and Platania 1991) and is listed 103 

as endangered under the U.S. Endangered Species Act (U.S. Fish and Wildlife Service 1994). 104 
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The primary threats to RGSM persistence are alteration of the natural hydrograph and resultant 105 

changes in geomorphology, driven by development of water infrastructure for flood control and 106 

irrigation withdrawals, as well as long-term climatic changes (U.S. Bureau of Reclamation 2016; 107 

Stone et al. 2017; Blythe and Schmidt 2018). Hydrologic and geomorphic changes have reduced 108 

the quantity, quality and heterogeneity of habitats available (e.g., Swanson et al. 2010; Magaña 109 

2012; Archdeacon 2016). Combined with large interannual variation in precipitation (i.e., 110 

snowpack), the geomorphic and hydrologic changes have reduced the frequency at which 111 

suitable spawning and rearing conditions exist, as well as increasing the frequency and extent of 112 

summer channel drying (Blythe and Schmidt 2018). The interannual variability in snowpack 113 

alongside limited storage capability, obligations to private water rights holders, and interstate 114 

water compacts complicate the ability of managers to address the hydrologic changes negatively 115 

affecting RGSM in the MRG (Hill 1974; O’Connor 2002; Kelly et al. 2007). Nonetheless, 116 

exploring and implementing habitat restoration, fish propagation and water management 117 

alternatives to promote the persistence and recovery of RGSM is a top priority for the many state 118 

and federal agencies operating in the MRG (U.S. Fish and Wildlife Service 2016).  119 

Given substantial uncertainty regarding the conditions most limiting to RGSM 120 

persistence and recovery, including the potential for hydrologic-based recovery options, there is 121 

a need to characterize the relationship between annual hydrologic conditions and RGSM 122 

abundance and distribution (U.S. Fish and Wildlife Service 2016). The U.S. Fish and Wildlife 123 

Service conducted initial analyses of the hydrologic drivers of RGSM abundance in the MRG as 124 

part of a biological opinion on the effects of U.S. Bureau of Reclamation water management 125 

activities. Following an external review of the statistical approach used those analyses (Budy and 126 

Walsworth 2019), we were contracted to incorporate the analytical changes suggested therein. 127 
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Our goals were to explore (1) how RGSM abundance in the MRG responds to changes in annual 128 

hydrologic conditions, (2) how RGSM relationships with hydrologic conditions differ spatially in 129 

the MRG, and (3) what hydrologic conditions would need to be present for managers to expect to 130 

meet different management and recovery targets. The results of these analyses and the models 131 

developed herein can be used in an adaptive management framework aimed at managing the 132 

trade-offs between off-stream water use, dam operations, and the conservation and recovery of 133 

RGSM in the MRG. Further, the framework developed for these analyses can be applied to 134 

examine the relative conservation potential of alternative management actions targeting other 135 

imperiled fishes globally. 136 

 137 

Methods 138 

Study Site 139 

The Rio Grande flows from the Rocky Mountains of southern Colorado, through central 140 

New Mexico, before forming the border between the United States of America and Mexico along 141 

the southern border of Texas and discharging into the Gulf of Mexico. The MRG extends from 142 

Cochiti Dam on the upstream end to the upstream extent of Elephant Butte Reservoir on the 143 

downstream end in central New Mexico. The MRG is delineated into four reaches separated by 144 

diversion dams: (upstream to downstream) Cochiti (36.2 river km), Angostura (65.6 river km), 145 

Isleta (85.5 river km), and San Acacia (102.3 river km). Due to limits to Tribal land access, 146 

RGSM have not been surveyed in the Cochiti reach since 1994 (U.S. Fish and Wildlife Service 147 

2016). Therefore, we restricted our analyses to the three downstream reaches for which data have 148 

been regularly collected. The number of sample sites per reach has varied and generally 149 

increased throughout the period of observation, with lower, less consistent effort before 2001 150 
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(number of sites per reach ranged from 2 to 8, with most effort in the San Acacia reach), 151 

consistent effort between 2001 and 2016 (5 sites in the Angostura reach, 6 sites in the Isleta 152 

reach, and 9 sites in the San Acacia reach), and further increased effort beginning in 2017 (a total 153 

of 10 sites in each reach; Dudley et al. 2018).  154 

 155 

Data 156 

The fish community of the MRG has been sampled multiple times annually since 1993 157 

(Dudley et al. 2018; data used in this study extend through 2017), with the exception of 1998 and 158 

2011. Samples collected in October have been the most consistent across the period of data 159 

collection and are the values examined for meeting conservation targets. As such, we limit our 160 

analyses to using the October sampling data. Newly recruited age-0 RGSM have survived the 161 

harshest summer drying conditions, flow variability is lowest, and are available for capture by 162 

sampling crews. The fish community is sampled via seining different habitats within a sample 163 

site, with the total area seined recorded for each haul. We pooled all October seine hauls within a 164 

sampling site for each year and divided by the total area seined to generate a site-specific index 165 

of RGSM density (# of RGSM per 100m2), which reflects the metrics used in RGSM 166 

conservation and recovery goals. 167 

The hydrobiological (HBO) analyses contained in the 2016 biological opinion (U.S. Fish 168 

and Wildlife Service 2016) incorporated many hydrologic metrics in their regressions of RGSM 169 

densities, including mean daily discharge, total discharge, number of days above or below 170 

different threshold discharge levels, and channel inundation area. Additionally, we calculated 171 

and explored the explanatory power of a metric of peak spring high flow timing, defined as the 172 
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Julian day of year with the greatest 5-day moving average discharge in May and June. All 173 

discharge data used in this analysis were from the Albuquerque Central gage (U.S. Geological 174 

Survey gage 08330000).  175 

In addition to high flow metrics, the HBO incorporated several metrics of summer drying 176 

conditions, including number of days the gages were less than different threshold discharge 177 

levels correlating with the onset of river drying. Such metrics are insufficient for delineating 178 

between extreme drying seasons, as a year with 10 days at 99 cfs discharge will have the same 179 

number of days below a threshold of 100 cfs as a year with 10 days at 0 cfs, for example. The 180 

habitat conditions experienced by RGSM under these two hypothetical scenarios will be vastly 181 

different, yet the conditions are identical by the threshold metric. As such, we developed an 182 

alternative metric of drying which would account for both the extent and duration of drying 183 

within each reach. Using data of the location of drying in the MRG from the “RiverEyes” 184 

program (U.S. Bureau of Reclamation), we calculated the number of mile-days dry per reach per 185 

year, by adding the number of miles dry per day across the season. While this metric provides a 186 

useful index of summer drying, it does not indicate the actual length and duration of drying.  As 187 

daily drying data are only available from 2002 to present, we estimated the extent of drying in 188 

the preceding years by fitting a linear regression between the square root of mile-days dry from 189 

the “RiverEyes” data to the area of the MRG channel that was inundated during the low flow 190 

period from July through October (U.S. Fish and Wildlife Service 2016). We fit separate 191 

regressions for each reach (San Acacia r2 =0.47, Isleta r2 = 0.30), resulting in unique drying 192 

indices for each reach in each year. The Angostura reach never experienced a measurable degree 193 

of drying during the period of “RiverEyes” monitoring, and we thus assumed it did not run dry 194 

throughout the extent of the RGSM monitoring data. 195 
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Pairwise comparisons revealed that many of these flow and drying metrics were highly 196 

correlated (Budy and Walsworth 2019), severely limiting the ability to ascribe importance to any 197 

single metric. To address this challenge, we conducted a principal components analysis (PCA) 198 

incorporating all of the metrics used in the HBO to describe the major axes of variation between 199 

years (additional details and examples in Appendix A). We subsequently used the first two 200 

principal components resulting from this PCA as our integrated flow metrics predicting RGSM 201 

distribution and density. 202 

 203 

Catch Model 204 

We developed a mixed-effects hurdle model incorporating a random-walk latent 205 

(unobserved) trend to predict the probability of encountering RGSM during sampling as well as 206 

the density of RGSM (catch per 100m2 sampled; hereafter “CPUE”) given they were 207 

encountered. The random effects (i.e., baseline probability of presence in the hurdle component 208 

and asymptotic maximum expected CPUE in the catch model) describe unique responses to 209 

environmental predictor variables in each reach, generating spatially-heterogeneous predicted 210 

RGSM CPUE. Additionally, the model assumes a random capture probability as a function of 211 

environmental conditions, reflecting the patchy distribution of RGSM observed in the dataset. 212 

Our model incorporated a hurdle component determining whether any RGSM were 213 

encountered at a sampling site during October sampling: 214 

 
𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑦) = 𝛼𝑟 + 𝜷𝒑𝝋𝒓𝒚 + 𝑤𝑦 

𝑤𝑦~𝑁(𝑤𝑦−1, 𝜎𝑤
2 ) 

(1a) 
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𝑤𝑦=1~𝑁(0, 𝜎𝑤
2 ) 

𝛼𝑟~𝑁(𝜇𝛼, 𝜎𝛼
2) 

 

 
𝐼(𝐶𝑟𝑦 > 0)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑟𝑦) 

 

(1b) 

where 𝑝𝑟𝑦 is the probability of encountering RGSM (i.e., catch is greater than zero) at a sample 215 

site in reach r, year y, 𝛼𝑟 is the reach-specific random effect baseline logit-capture probability, 216 

𝜷𝒑 is a vector of estimated parameters, 𝝋𝒓𝒚 is a vector of environmental predictor variables (i.e., 217 

principal component scores), 𝑤𝑦 is the random walk time series component, 𝜇𝛼 is the global 218 

mean baseline logit capture probability, 𝜎𝛼
2 is the among reach variance in baseline logit capture 219 

probability, and 𝐶𝑟𝑦 is the CPUE sampled at site r, year y. This formulation assumes that if any 220 

RGSM are present at the site, at least one will be captured. While the probability of capturing 221 

RGSM likely varies among mesohabitats (due to depth, velocity, connectivity), this model does 222 

not explicitly account for this variation as mesohabitat samples are combined by site in our 223 

analysis. Any variation in capture probabilities among mesohabitat types or differences in 224 

mesohabitat composition among sites will be accounted for in the variance of 𝑝𝑟𝑦. Low flow 225 

variation in October allows us to assume that the probability of encountering RGSM will not be 226 

substantially affected by discharge, though any discharge effect that remains will be accounted 227 

for in the variance of 𝑝𝑟𝑦. 228 

The catch component of the model incorporates a Gompertz function with gamma 229 

distributed errors to predict October RGSM CPUE in each reach (given CPUE is greater than 230 

zero): 231 
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𝐶𝑟𝑦 = 𝐾𝑟𝑒−𝛽𝑜𝑒−𝜷𝒄𝜹𝒓𝒚  

𝐾𝑟~𝑁(𝜇𝐾, 𝜎𝐾
2) 

 

(2a) 

 

𝜎𝑟𝑦 = 𝑐𝑣 × 𝐶𝑟𝑦 

𝜃𝑟𝑦 =
𝐶𝑟𝑦 + √𝐶𝑟𝑦 + 4𝜎𝑟𝑦

2

2𝜎𝑟𝑦
2

 

𝛾𝑟𝑦 = 1 + 𝜃𝑟𝑦𝐶𝑟𝑦 

 

(2b) 

 (𝐶𝑟𝑦|𝐶𝑟𝑦 > 0)~𝛤(𝛾𝑟𝑦, 𝜃𝑟𝑦 ) (2c) 

 232 

where 𝐾𝑟 is the asymptotic maximum expected CPUE in reach r, which is normally distributed 233 

with an among reach mean of 𝜇𝐾 and variance of 𝜎𝐾
2, 𝛽𝑜 and 𝜷𝒄 are estimated parameters, 𝜹𝒓𝒚 is 234 

a vector of environmental variables predicting CPUE, 𝜎𝑟𝑦 is the residual standard deviation in 235 

CPUE, cv is the coefficient of variation of CPUE, 𝜃𝑟𝑦 and 𝛾𝑟𝑦 are the gamma distribution rate 236 

and shape parameters.  237 

Importantly, our model assumes that capture probability and catch rates are not impacted 238 

by discharge at the time of sampling. Low flows during sampling may concentrate RGSM in 239 

easily sampled habitats, while higher flows may spread RGSM more broadly. Explicitly 240 

acknowledging CPUE metrics as indices of relative abundance and not linearly-related 241 

proportions of total abundance when interpreting model results limits the potential management 242 

pitfalls from violating the assumption of equal catchability across all flow conditions during 243 

sampling (Budy and Walsworth 2019).  244 
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 In addition to the base model described above, we explored three model structures which 245 

altered the base model in minor but meaningful ways: one model removed the hurdle component, 246 

one model removed the latent trend estimation, and a third modeled age-0 RGSM abundance 247 

only and included an effect of the previous year’s total RGSM CPUE. These models and their 248 

results are described more fully in Appendix B, but the broad results and management 249 

implications of all of the models are comparable to the base model reported in the main 250 

document. 251 

 We fit the hurdle models in a Bayesian hierarchical framework, with 3 Markov Chain 252 

Monte Carlo (MCMC) chains, a burn-in period of 150,000 samples, a monitoring period of 253 

150,000 samples, and a thinning rate of 150. We considered models to have reached convergence 254 

if all parameters had an “Rhat” value less than 1.1, (Gelman and Hill 2007). We fit all models 255 

using the Just Another Gibbs Sampler (JAGS) software (Plummer 2003) with uninformative 256 

priors (Table 1), implemented through the R Statistical Computing Environment (R Core Team 257 

2018).  258 

 259 

Simulation Model 260 

To examine the probability of meeting conservation targets under different hydrologic 261 

scenarios, we simulated RGSM CPUE from 10 sample sites (i.e., 10 random draws from the 262 

model predicted distribution of CPUE) in each reach across a range of hydrologic conditions 263 

(i.e., integrated flow metric values) using parameter values drawn from the posterior distribution 264 

of MCMC samples from the best fitting model. We then calculated the proportion of simulated 265 
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years in which recovery targets were met for each reach individually, as well as across all 266 

reaches.  267 

Additionally, we examined the probability of individual reaches achieving a range of 268 

CPUE targets for five consecutive years under contemporary hydrologic conditions. We 269 

randomly selected five hydrologic years observed in the data set, five consecutive random walk 270 

values from the presence model component output, and examined whether the individual reaches 271 

or MRG as a whole met a range of CPUE thresholds from 0 to 5 RGSM per 100m2. We 272 

conducted the simulation analyses in the R Statistical Computing Environment (R Core Team 273 

2018). 274 

 275 

Results 276 

Environmental Factors 277 

The first principal component of the PCA of hydrologic predictors used in the HBO 278 

explains 70.4% of the variation in the data. Years with large spring flows and less summer 279 

drying are characterized by positive values on this axis, while years with small spring flows and 280 

more summer drying are characterized by negative values (Figs. 1, 2). We used the scores on the 281 

first principal component as our integrated annual “hydrologic index”, broadly characterizing 282 

wet years from dry years. As this hydrologic index accounted for over 70% of the annual 283 

variation in hydrologic conditions, we used this as the hydrologic predictor variable for both 284 

density and presence in our models. The second principal component explained an additional 285 

16.9% of the variation in the annual hydrologic conditions. Years with early spring flow peaks 286 

and more summer drying are characterized by positive PC2 values, while years with late spring 287 
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peak flows and less summer drying are characterized by negative PC2 scores (Figs. 1, 2). The 288 

scores on the second principal component served as an additional integrated flow metric, 289 

characterizing years with delayed spring flows and limited drying from years with early spring 290 

flows and more drying, and can be considered a “flow timing index”. While we examined a 291 

model incorporating both the hydrologic and flow timing indices simultaneously as predictors for 292 

both presence and density of RGSM, that model had much lower support by WAIC (Watanabe 293 

2010; Gelman et al. 2014). As such, we focus on the model incorporating only the hydrologic 294 

index in the main document (hereafter, the “base model”), while presenting the model 295 

incorporating both indices along with other alternative model results in Appendix B. 296 

 297 

Catch Models 298 

From the base model, we predicted the CPUE of RGSM sampled in October would 299 

increase with greater values of our annual hydrologic index (i.e., higher spring flows and less 300 

summer drying; Fig. 3a).  The probability of encountering RGSM was also positively related to 301 

the annual hydrologic index (Fig. 3b). The three reaches of the MRG demonstrated substantial 302 

overlap in estimated baseline encounter probabilities (Fig. 4ac) and asymptotic maximum CPUE 303 

estimates (Fig. 4bd), though the San Acacia reach demonstrated the highest values for both 304 

parameters (4ef) and Isleta demonstrated a significantly greater baseline probability of presence 305 

than Angostura (4f). The latent trend impacting encounter probabilities demonstrated an 306 

approximately decadal periodic pattern (Fig. 3c), with a low period in the late 1990s and early 307 

2000s, as well as during the early 2010s, with periods of higher values intervening. 308 
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Based on Model 1 predicted CPUEs matched field observations very well (Fig. 5), with 309 

only 11 out of 413 observations (2.7%) falling outside of the predicted ranges. For each reach 310 

and year, the model predicts many sites will have low CPUE, with smaller probabilities of large 311 

capture events occurring. The model also recreated the general patterns of encounter 312 

probabilities well for all reaches (Fig. 6), though, unsurprisingly given the relatively small 313 

number of sample sites in each reach, the observed proportion of sample sites with non-zero 314 

catch sometimes fell outside of the 95% credible intervals for predicted probabilities.  315 

 316 

Simulation Model 317 

Model simulations suggest hydrologic conditions near the median of those observed 318 

during the monitoring period are required for there to be a 95% chance of mean CPUE within 319 

and among reaches to be greater than 1 (Fig. 7a), the “self-sustaining population” threshold for 320 

the RGSM population, with the exception of in the San Acacia reach. The Angostura reach 321 

would require an annual hydrologic index slightly above the median observed value to have a 322 

95% probability of having CPUE greater than 1. Angostura has the lowest probability of meeting 323 

the CPUE threshold of the three reaches because the majority of site-specific CPUE values are 324 

predicted to be small, even during above average flow years (Fig 7b). The Isleta reach is 325 

predicted to have larger site-specific CPUE during modest flow years than the Angostura reach 326 

(Fig. 7c), and thus is predicted to have a reach-level CPUE greater than 1 with 95% probability 327 

during years with hydrologic indices slightly below the observed median values. The San Acacia 328 

reach has a 95% of having a mean CPUE greater than 1 under hydrologic indices greater than 329 

approximately the 25th percentile, as large (>20 RGSM per 100m2) CPUE at individual sampling 330 

sites is predicted to occur sporadically even during modestly low flow years (Fig. 7d). 331 



17 
 

As expected, the probability of meeting CPUE targets across five consecutive years 332 

declines with increasing CPUE targets (Figure 8). While none of the reaches are likely to exceed 333 

the published down-listing criteria of CPUE >5 RGSM/100m2 for five consecutive years, lower 334 

targets commonly used for management are more likely to be met. The San Acacia reach is more 335 

likely to achieve CPUE targets than the other two reaches across all thresholds explored and is 336 

more likely to achieve CPUE targets than the MRG average for threshold greater than ~0.6 337 

RGSM per 100m2. San Acacia reach has a high probability of meeting current “self-sustaining 338 

population” targets of 1.0 RGSM per 100m2 for five consecutive years, exceeding this threshold 339 

in approximately 60% of simulations. However, both Isleta (~40%) and Angostura (~25%) have 340 

much lower exceedance probabilities.  341 

 342 

Discussion 343 

Successful conservation of imperiled species occupying rivers with highly altered 344 

hydrographs will often require a return to more natural flow regimes (Poff et al. 1997; Dudgeon 345 

et al. 2006; Reid et al. 2019), but contemporary constraints may require a focus on ecological 346 

principles and creative management (Thorpe and Stanley 2011). Here, we demonstrate how the 347 

Rio Grande Silvery Minnow (RGSM) is predicted to respond positively in both distribution and 348 

abundance to wetter conditions across both spring and summer. Years with larger spring high 349 

flow events and less summer drying demonstrated a greater probability of RGSM being captured 350 

at each sampling site, as well as higher expected densities when they were encountered. These 351 

results support previous assessments of RGSM population responses to hydrologic changes in 352 

the MRG (Archdeacon 2016; Dudley et al. 2018; USFWS 2016), but also incorporate a model 353 

structure accounting for spatially-heterogeneous relationships, sampling variability, and a more 354 
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robust presentation of prediction uncertainty. These results can ultimately guide explorations of 355 

future management options aimed at providing sufficient habitat conditions to allow persistence 356 

and growth of the RGSM population, as well as meet the needs of off-stream water users. 357 

Inundated floodplain habitats during spring runoff historically provided RGSM with low 358 

velocity spawning habitats and productive rearing habitats for juveniles to grow rapidly (Medley 359 

and Shirey 2013), and these habitats may still attract spawning RGSM when available (Hutson et 360 

al. 2018; Valdez et al. 2019). Water development and levee construction throughout the basin 361 

has reduced the magnitude, extent and duration of spring high flow events, such that floodplains 362 

are inundated less frequently and for shorter periods of time (Stone et al. 2017; Blythe and 363 

Schmidt 2018), limiting the quantity and quality of available rearing habitat. These changes have 364 

combined to reduce the frequency and magnitude of RGSM recruitment events. Additionally, the 365 

effect of increased flows  on CPUE is stronger for the San Acacia reach than the Isleta reach, 366 

which responds more strongly than the Angostura reach, a pattern potentially explained by the 367 

different discharges required to inundate floodplain habitats in the three reaches (Tetra Tech 368 

2014). Our model results suggest years with smaller spring high flows produce smaller 369 

recruitment classes and, thus, lower catch rates in the fall. Similar patterns have been observed in 370 

other desert rivers globally (e.g., Propst and Gido 2004; Balcombe and Arthington 2008; Van 371 

Haverbeke et al. 2013; Budy et al. 2015).  372 

Arid land rivers have experienced increased intermittency in recent decades due to over-373 

allocation of water and drought, with major consequences for native biota not adapted to 374 

intermittent conditions (e.g., Gleick 2003; Datry et al. 2014; Allen et al. 2019).  In our study, 375 

intermittent, but extensive, channel drying in summer also appears to be driving reduced 376 

distribution and densities of RGSM in the MRG, as drying metrics loaded strongly onto our 377 
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integrated annual hydrologic index. Increased extent of drying will reduce the total amount of 378 

habitat available to RGSM, potentially increase competition for resources, as well as strand 379 

individuals as isolated pools dry up, collectively resulting in both indirect and direct mortality 380 

(Lake 2003). While it is difficult to tease apart the effect of spring flows from summer drying in 381 

the available dataset due to high correlation between the hydrologic metrics, our model suggests 382 

efforts to reduce the amount of drying in the summer would benefit RGSM populations. The 383 

extent of drying that needs to be avoided or mitigated in order to maintain conservation targets 384 

will likely depend on the magnitude and duration of spring flow events, because lower spring 385 

flows produce very weak recruitment, which can then be exacerbated by extensive drying further 386 

reducing abundance. Additionally, our modeling results suggests that were extensive drying to 387 

occur in the MRG following a large spring high flow event, the benefits realized from a large and 388 

successful spawning event would be diminished (see also results of base model incorporating 389 

both the hydrologic and flow timing indices in Appendix B). However, given the data available, 390 

the trade-offs between mitigating summer drying conditions versus promoting spring high flows 391 

remain uncertain. 392 

The ideal, though logistically and socially challenging, approach to teasing apart the 393 

effect of summer drying from the magnitude and duration of spring high flows would be multiple 394 

adaptive management based experimental manipulations of flows, such as allowing extensive 395 

drying following a large spring flow event, or maintaining relatively high flows during summer 396 

following a relatively small spring high flow event. The existing observed data provide initial 397 

glances into the different effects of spring high flows and summer drying on RGSM. First, 398 

RGSM CPUE was very low (zero in Angostura and Isleta, 0.8 in San Acacia) in 2000 after 399 

managers maintained in-stream flows despite a small (only 1 day with flows >1500cfs) spring 400 
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runoff. Additionally, the Angostura reach does not experience drying (during the time frame 401 

examined here), yet the CPUE trends in this reach match those of the other two reaches 402 

experiencing summer drying. While this pattern may suggest a stronger influence of spring high 403 

flows than of drying, the available data provide no information about how much lower CPUEs 404 

would have been had Angostura experienced drying. Until sufficient data become available to 405 

discriminate the effects of summer drying from spring high flows at the population level, basic 406 

biological principles suggest reducing the amount of drying will benefit RGSM summer survival. 407 

Nonetheless, our model results highlight the need to manage water across years to cope with 408 

variable hydrology across years and the life history of the RGSM, a challenging but not 409 

insurmountable concept given the way the MRG is currently operated (e.g., Stanford et al. 1996; 410 

Rood et al. 2005). 411 

Despite the substantial changes to the river’s hydrology and floodplain habitats, our 412 

model results suggest, in years with large spring flows and limited summer drying (or when 413 

water releases are managed for RGSM spawning; Valdez et al. 2019), the remaining habitat in 414 

the MRG is sufficient to produce enough recruits to meet management and recovery targets (>1 415 

RGSM per m2 for self-sustaining population target; > 5 RGSM per m2 for downlisting target). 416 

However, sufficient hydrologic conditions to meet downlisting targets have occurred only 417 

sporadically during the period examined here and would need to occur more frequently and 418 

across multiple years if recovery goals were to be met. More modest management targets 419 

currently in use to avoid extinction are much more likely to be met under the current range of 420 

hydrologic conditions. The relationship between annual flows and RGSM density demonstrates a 421 

non-linear pattern, indicating increasing CPUE response rates across lower hydrologic indices, 422 

while simultaneously suggesting eventual diminishing returns of increasing hydrologic indices 423 
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given the current configuration of channel and floodplain habitats (i.e., how high flows interact 424 

with local geomorphology and levees to inundate floodplain habitats). While these non-425 

linearities are driven by the model formulation and available data here, the process makes 426 

intuitive biological sense in the MRG and other large rivers (e.g., Tetra Tech 2014; Robertson et 427 

al. 2018). High flows do not inundate valuable floodplain rearing habitats until surpassing bank 428 

heights dependent on local geomorphology, and increasing flows once floodplains begin to be 429 

inundated will increase the amount of productive rearing habitat available for RGSM (Junk et al. 430 

1989; Tetra Tech 2014). However, under current conditions, if flows were to reach the levees, 431 

further increased flows would no longer inundate additional, historical floodplain rearing 432 

habitats, making existing inundated areas deeper instead. As these hypothetical capacities exist 433 

under flow conditions well beyond those observed in the recorded data, their estimated values 434 

should be considered with caution. Floodplain restoration activities aimed at increasing the 435 

amount of available habitat at lower flow levels should increase RGSM production during years 436 

with smaller spring runoff events (Widmer et al. 2010; Valdez et al. 2019). However, the scale of 437 

habitat restoration necessary for population level impacts may be extensive (Opperman et al. 438 

2010) and would likely require considerable active maintenance if the natural processes creating 439 

and maintaining these habitats are not restored (Beechie et al. 2010). 440 

Species which are more widely distributed across the landscape are less sensitive to local 441 

disturbances (Hanski 1998), as populations can remain productive despite poor conditions at a 442 

subset of locations (Schindler et al. 2010; Schindler et al. 2015). Rio Grande Silvery Minnow 443 

recovery targets focus not only on catch rates, but also on their distribution across habitats, 444 

requiring RGSM to be present at 75% of sampling sites for 5 consecutive years (USFWS 2016). 445 

The probability of encountering RGSM at each sampling site was greater in years with greater 446 
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hydrologic indices, suggesting a broader spatial distribution in these years. This pattern may be 447 

driven by several potential (though not mutually exclusive, nor exhaustive) mechanisms. Higher 448 

spring flows will inundate the floodplain across a greater percentage of the length of the MRG, 449 

thus producing recruits in more locations. Alternatively, the increased abundance of RGSM after 450 

large flow years causes RGSM to occupy more locations to find sufficient resources (Fretwell 451 

and Lucas 1970; Rosenzweig 1991). At low abundances, RGSM should occupy only the best 452 

habitats for growth and survival opportunities. As those habitats become increasingly crowded at 453 

larger abundances, the per capita growth and survival opportunities decline, and individuals 454 

should seek out alternative habitats (e.g., Fausch 1984; Hedger et al. 2005; McMahon and Matter 455 

2006). Increased abundance should thus increase the spatial distribution of RGSM in the MRG 456 

as sequentially less beneficial habitats become occupied. Further, years with higher hydrologic 457 

indices also generally have less summer drying, which should allow RGSM to maintain their 458 

distribution without having to disperse in the face of drying. While any of these processes would 459 

result in RGSM being encountered at more locations during years with higher hydrologic 460 

indices, they are not the only possible drivers, and the uncertainty of additional stressors presents 461 

a valuable opportunity for future studies (Göthe et al. 2019).  462 

Incorporating latent trends into time-series analyses can not only explain additional 463 

variance not described by measured predictor variables, but also help identify unmeasured 464 

drivers of the dynamics of interest, highlighting avenues of future research and adaptive 465 

management (e.g., Mills et al. 2013; Cline et al. 2017). The latent trend in our model of RGSM 466 

presence demonstrates a periodic pattern to RGSM presence, where years with higher probability 467 

of presence than expected from hydrology alone are likely to be followed by years of higher than 468 

expected presence, for example. The trend we observed demonstrates periodicity at 469 
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approximately decadal scales, thus possibly being driven by decadal scale regional climate 470 

variation (e.g., Pacific Decadal Oscillation; Mantua and Hare 2002). Alternatively, this pattern 471 

could potentially be explained by survival from the previous year (potentially including stocked 472 

individuals) impacting the current year’s RGSM population. Indeed, the alternative model 473 

structure examining the response of age-0 RGSM density to both hydrologic indices and the 474 

previous year’s abundance found a negative effect of very low previous abundance on the 475 

probability of presence at any given site, though the effect diminished as abundance in the 476 

preceding year increased (see Appendix B). While we have not explored the impact of 477 

augmentation activities on RGSM CPUE dynamics, the results of our age-0 model suggest that 478 

any stocking effect would be primarily important when abundance in the preceding year is very 479 

low. When RGSM occupy a large proportion of their habitats in one year, they may continue to 480 

occupy a larger than expected proportion of habitats the next year even in the presence of 481 

relatively poor hydrologic conditions. Similarly, if RGSM are restricted to a small proportion of 482 

habitats, one year of favorable hydrologic conditions may not restore them to all possible 483 

habitats, and thus they may remain at fewer habitats than would be otherwise anticipated. King et 484 

al (2015) similarly observed that both concurrent and antecedent flow conditions were important 485 

for many species, with the best outcome resulting from an increase in the magnitude of smaller 486 

high flow events following lower antecedent flow conditions in the Murray River, Australia.  487 

Future research which would complement our study results could explore the environmental or 488 

biological conditions which may be driving the latent trend identified in this study. However, the 489 

highly managed hydrograph of the Rio Grande from its headwaters through the MRG could 490 

make this challenging, as in many years, river flows are decoupled from environmental 491 
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conditions in the basin due to upstream and local storage and diversion, as well as inter-basin 492 

water transfers (Blythe and Schmidt 2018; Budy et al. 2018). 493 

While the hydrology of the contemporary MRG is highly altered from the historic 494 

conditions to which RGSM have adapted their life history (Cowley 2006; Medley and Shirey 495 

2013; Blythe and Schmidt 2018), conditions suitable to producing large recruitment events still 496 

occur intermittently. Indeed, our simulations suggest that local RGSM densities can be 497 

anticipated to be at or above the target threshold with 95% probability under hydrologic 498 

conditions relatively common to the MRG during the period of observation, particularly in the 499 

San Acacia reach. While wetter hydrologic conditions would be required to achieve targets in the 500 

Isleta and Angostura reaches, as well as for the full MRG segment of the Rio Grande, these 501 

flows have been observed in the period of record and could potentially occur more frequently 502 

under alternative water management strategies. These results suggest managing the water in the 503 

MRG to achieve conservation goals may be attainable under current hydrologic conditions, 504 

though doing so will be complicated by the ability to manage flows across multiple years, 505 

periodic conditions of multi-year drought, legal barriers presented by local and inter-state water 506 

agreements, and changing climatic conditions over longer time frames (Hill 1974; O’Connor 507 

2002; Kelly et al. 2007). Using the model developed herein (along with the alternative models 508 

presented in Appendix B) to explore alternative management approaches can highlight options 509 

that have an opportunity to succeed which can then be assessed for their feasibility (see example 510 

in Appendix A Figs. S5-8), an approach which has been applied in other river systems. For 511 

example, Zarri et al. (2019) recently used a similar hydrologically driven optimization approach 512 

to determine the best strategy to manage dam releases for multiple species with different 513 

temperature requirements in the Sacramento River (California, USA). Given that management 514 
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and conservation resources are limited, future work also complementary to our study could 515 

incorporate the costs of management actions in feasibility assessments to aide in sound 516 

conservation planning (Evans et al. 2015; Walsh et al. 2020). 517 

Understanding how sensitive species respond to changes in their environment allows 518 

managers, stakeholders and policymakers to consider the trade-offs of multiple ecosystem goals 519 

when setting management plans (e.g., Halpern et al. 2013; Redpath et al. 2013; Song et al. 2019). 520 

Many biological, social, and economic goals are being pursued simultaneously in the MRG, 521 

often by different agencies operating different control levers. The relationships between RGSM 522 

abundance, distribution and MRG hydrology identified in this study provide a valuable 523 

framework for stakeholders to explore trade-offs between RGSM conservation and fulfilling 524 

obligations to off-stream water users. By exploring trade-offs presented by different water 525 

management strategies under future hydrologic scenarios, approaches that provide positive 526 

outcomes for multiple management goals may be identified and implemented in an adaptive 527 

management framework (Walters and Hilborn 1978; Walters 1986). Explicitly considering the 528 

trade-offs between multiple management goals will allow stakeholders in the MRG to make 529 

more informed decisions about managing the ecosystem for multiple benefits, including the 530 

conservation of endangered species. 531 
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Tables and Figures 773 

Table 1. Prior distributions used in the RGSM catch model. 774 

Parameters Prior 
βc 
βp 

N(0,1000) 

β0 
ln(cv) 

N(0,100) 

μk N(0,10) T(0,5) 

μp N(0,10) 

σk 
σα 
σw 

U(0,10) 

 775 

  776 
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Figures 777 

 778 

Figure 1. Biplot of the first and second principal components of the hydrologic predictors used 779 
in the HBO analysis. Arrows indicate the direction and magnitude of the predictor variable 780 
vectors. Blue (orange) arrows represent predictor variables related positively (negatively) to 781 

wetter conditions. The first principal component explains 70% of the observed variation in 782 
hydrologic predictor variables across years. 783 
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 784 

Figure 2. Principal component loadings for the first two principal components of our PCA. Blue 785 
(orange) bars represent predictor variables related positively (negatively) to wetter conditions. 786 

  787 
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 788 

Figure 3. Posterior distributions of parameter estimates for the effect of hydrologic index on 789 
catch (a) and encounter probability (b), and the random walk latent trend impacting encounter 790 

probabilities (c). The light grey box indicates the 95% credible interval from the MCMC 791 
samples, and the vertical dashed line (a, b) indicates the median parameter estimate for panels 792 
(a,b). The light grey polygon and dark grey polygons indicate the 95% and 50% credible 793 
intervals, respectively, for MCMC samples of annual random walk values, and the solid black 794 

line indicates the median MCMC estimate.  795 

 796 
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  797 

Figure 4. Predicted mode of reach-specific RGSM catch per 100m2 when they are present (a) 798 
and reach-specific probability of encountering RGSM (b) across a range of hydrologic index 799 

values (larger values indicate larger and longer duration spring high flows, and less summer 800 
drying), and the posterior distributions of MCMC samples for reach specific carrying capacity 801 
(c) and baseline encounter probability (d) parameters. Posterior distribution of reach specific 802 
differences in K (e) and α (f) from the global mean value. The horizontal boxplot above (a) and 803 
(b) indicates the 95%, 50% and 10% ranges of observed hydrologic indices magnitudes.  804 
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 805 

Figure 5. Predicted (boxplots) and observed (points) catch per 100m2 for Rio Grande Silvery 806 
Minnow in the Angostura (a), Isleta (b) and San Acacia (c) reaches. The different widths of the 807 
boxplots represent the 95%, 50% and 10% prediction intervals.   808 
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 809 

Figure 6. Predicted (boxplots) and observed (points) annual encounter probabilities for Rio 810 
Grande Silvery Minnow in the Angostura (a), Isleta (b) and San Acacia (c) reaches. The different 811 

widths of the boxplots represent the 95%, 50% and 10% prediction intervals.  812 
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 813 

Figure 7. Probabilities of Rio Grande Silvery Minnow catch per 100m2  in each reach (colored 814 

lines) and across the whole MRG (black line) being greater than 1.0 across a range of hydrologic 815 
indices (a), and the predicted CPUE of Rio Grande Silvery Minnows at different hydrologic 816 
indices in the Angostura (b), Isleta (c) and San Acacia (d) reaches. The horizontal boxplot above 817 

(a) indicates the 95%, 50% and 10% ranges of observed hydrologic indices and the horizontal 818 

dashed line indicates a 95% threshold. The polygons in (b-d) indicate the 95%, 90% and 50% 819 
simulation intervals and the line indicates the median predicted CPUE. 820 

  821 
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 822 

 823 

Figure 8. Simulated probability of RGSM catch per 100m2 exceeding different target thresholds 824 
for five consecutive years under the range of hydrologic conditions in the dataset. 825 
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Principal Components Analysis Background 13 

Exploratory analyses examining the relationship between a response variable and different 14 

environmental conditions are often presented with a large number of plausible driving factors to 15 

consider. Such high dimension datasets can be difficult to manage and efficiently explore. 16 

Additionally, many of the plausible predictor variables can be correlated, limiting the ability to 17 

differentiate between the effects of two potential drivers. Principal components analysis (PCA) is 18 

a method for generating orthogonal (perpendicular and uncorrelated) variables from a larger set 19 

of predictor variables, and are a valuable tool for reducing dimensionality of data sets (method 20 

developed by Pearson 1901; primer for use in ecology presented in Gotelli and Ellison 2004). 21 

The first principal component of a dataset is the linear combination of the original predictor 22 

variables describing the maximum variance in the data set. The second principal component is 23 

the linear combination of the original predictor variables which describes the maximum variance 24 

in the dataset after accounting for the first principal component. As the principal components are 25 

orthogonal and thus uncorrelated, each component provides distinct information. 26 

For our exploration of Rio Grande silvery minnow (RGSM) response to annual hydrologic 27 

conditions, we initially considered the large number of hydrologic metrics incorporated in the 28 

original HBO. These metrics ranged from spring flow volumes, to days with flow above a 29 

various threshold discharges, to summer minimum flow values and the extent of drying. Many of 30 

these hydrologic variables are highly correlated with one another, limiting our ability to 31 

disentangle the influence of multiple variables. Therefore, we applied a PCA to our predictor 32 

variables to produce two new, uncorrelated and integrated metrics of annual hydrologic 33 

conditions in the Middle Rio Grande. 34 
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The first principal component (PC1) explained over 70% of the interannual variance in 35 

hydrologic conditions (Fig. S1). Thus, by reducing the dimensionality of our hydrologic dataset 36 

to a single variable (PC1), we are still able to retain over 70% of the information contained in the 37 

original 15 predictor variables. The second principal component explains an additional 17% of 38 

the variance in the data (Fig. S1). Using only these two novel, uncorrelated integrated metrics of 39 

annual hydrologic conditions, we are able to retain 87% of the information contained in the 40 

original dataset and do not have to address issues of collinearity in our predictor variables, 41 

greatly simplifying our ultimate RGSM distribution and catch modeling efforts. 42 

 43 

 44 

Supplemental Figure S1. Cumulative variance in interannual hydrologic conditions explained by principal 45 

components. The first principal component explains approximately 70% and the second principal component 46 

explains an additional 17% of the variance in the hydrologic data. 47 

 48 
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The first principal component generally separates wet years (those with larger spring flows and 49 

less summer drying; positive values on PC1) from dry years (with smaller spring flows and more 50 

summer drying; negative values on PC1; Figs. S2, S3a), and is referred to as the annual 51 

hydrologic index in the main document. The second principal component separates out those 52 

years with more summer drying than would be expected given large spring flows coupled with 53 

early spring peak flow timing (positive values on PC2) from those with less drying than would 54 

be expected given smaller spring flows coupled with late spring peak flows (negative values on 55 

PC2; Figs. S2, S3b), and is referred to as the flow timing index in the main document. 56 

 57 

 58 

Supplemental Figure S2. Biplot of the first two principal components for the Middle Rio Grande annual hydrologic 59 

metrics. The first principal component generally separates wet years (those with large spring flows and less 60 

summer drying; positive values) from dry years (with small spring flows and more summer drying; negative values). 61 

The second principal component separates out those years with more summer drying than would be expected 62 

given large spring flows coupled with early spring peak flow timing (positive values) from those with less drying 63 
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than would be expected given smaller spring flows coupled with late spring peak flows. Blue (orange) arrows 64 

indicate loadings for those predictor variables which respond positively (negatively) to wetter conditions. 65 

 66 

Supplemental Figure S3. Predictor variable loadings for principal component 1 (a) and principal component 2 (b). 67 

Loadings represent the multipliers used in the linear combination of predictor variables (centered and scaled) used 68 

to calculate annual principal component scores. Blue (orange) bars indicate loadings for those predictor variables 69 

which respond positively (negatively) to wetter conditions. 70 

 71 

Conducting a Principal Components Analysis 72 

A principal components analysis requires predictor variables to be centered (i.e., subtract the 73 

mean from all values such that the mean of the centered data equals zero) and scaled (i.e., divide 74 

the centered data by the standard deviation of the data). Each predictor variable is centered and 75 

scaled individually. The matrix of centered and scaled predictor variables is then passed to a 76 

PCA function in a statistical computing environment (we used the function “prcomp” within the 77 

R Statistical Computing Environment; R Core Team 2018). The PCA function will calculate the 78 
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principal component loadings (i.e., the linear contributions of each predictor variable to each 79 

principal component, representing eigenvectors which diagonalize the covariance matrix of 80 

centered and scaled predictor variables), the variance explained by each principal component, 81 

and the “scores” for each principal component for each year of data. Below, we provide an 82 

example of how these scores are calculated from the input data and the principal component 83 

loadings (Fig. S4). 84 

 85 

 86 

Supplemental Figure S4. Conceptual description of how annual principal component scores are calculated. Metrics 87 

are color coded between the table and the step-by-step boxes. 88 

 89 

Annual principal component scores are calculated by adding the linear combination of principal 90 

component loadings multiplied by the centered and scaled annual hydrologic conditions: 91 
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 𝑃𝐶𝑧𝑦 = 𝑢𝑧,1𝑋1,𝑦 + 𝑢𝑧,2𝑋2,𝑦 +⋯𝑢𝑧,𝑛𝑋𝑛,𝑦 (S.1) 

where X1, X2, … Xn are the annual hydrologic metrics and 𝑢𝑧,𝑛 are the principal component 92 

loadings for the zth principal component and nth predictor variable. In the case of our Middle Rio 93 

Grande hydrology PCA, the equation for principal component 1 is: 94 

 95 

 𝑃𝐶1,𝑦 = 0.36 × 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑆𝑝𝑟𝑖𝑛𝑔𝑉𝑜𝑙𝑦 + 0.28 × 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑀𝑖𝑛𝑦

+ 0.36 × 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑆𝑝𝑟𝑖𝑛𝑔𝐴𝑣𝑔𝑦 + 0.35 × 𝐷𝑎𝑦𝑠𝐶𝑒𝑛𝑡𝑆𝑝𝑟𝑖𝑛𝑔1500𝑦

+ 0.36 × 𝐷𝑎𝑦𝑠𝐶𝑒𝑛𝑡𝑆𝑝𝑟𝑖𝑛𝑔2000𝑦 + 0.36 × 𝐷𝑎𝑦𝑠𝐶𝑒𝑛𝑡𝑆𝑝𝑟𝑖𝑛𝑔2500𝑦

+ 0.35 × 𝐷𝑎𝑦𝑠𝐶𝑒𝑛𝑡𝑆𝑝𝑟𝑖𝑛𝑔3000𝑦 − 0.28 × 𝑆𝑎𝑛𝐴𝑐𝑎𝑀𝑖𝑙𝑒𝐷𝑎𝑦𝐷𝑟𝑦𝑦

− 0.25 × 𝐼𝑠𝑙𝑒𝑡𝑎𝑀𝑖𝑙𝑒𝐷𝑎𝑦𝐷𝑟𝑦𝑦 + 0.06 × 𝐹𝑙𝑜𝑜𝑑𝑇𝑖𝑚𝑖𝑛𝑔𝑦 

 

(S.2) 

Supplemental Figure S1 provides a graphical walkthrough of the calculation of the annual PC1 96 

and PC2 scores for the year 2002. 97 

 98 

Simulating with Principal Component Metrics 99 

In addition to generating scores for years which hydrologic observations are available, equation 100 

[S.1] can be used to generate principal components scores for hypothetical hydrologic 101 

conditions. With the exception of the mile-days dry in San Acacia and Isleta, all of the other 102 

predictor variables can be calculated off of a hydrograph, and the remaining drying metrics can 103 

be sampled with uncertainty given the other hydrologic conditions. Therefore, if a management 104 

agency generates a forecast hydrograph, with mean daily flows throughout the year, calculating 105 

PC1 and PC2 scores for the forecast year involves only calculating or estimating the predictor 106 
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variables from that forecast hydrograph and using equation [S.1] to calculate an annual principal 107 

components score. This could similarly be done with a simulated hydrograph including 108 

alternative water management scenarios (e.g., storing water during the spring high flow period 109 

and releasing the stored water during the summer low flow period; Fig. S5). The resultant 110 

principal components scores (Fig. S6) can be used to predict RGSM distribution and density 111 

(Fig. S7), as well as the probability of achieving conservation targets (Fig. S8), with the model 112 

presented in this report. Ultimately, examining the predicted response of RGSM populations to 113 

alternative flow and management scenarios across multiple models can provide managers and 114 

stakeholders with a quantitative view of the trade-offs among the different options available to 115 

managing flows for RGSM in the MRG. 116 

 117 

Figure S5. Examples of alternative water management strategies within a given water year. Here, the black line 118 
represents the “no action” hydrograph, while the redline represents the hydrograph when ~200 acre feet per day are 119 
stored during May and June, and subsequently released during September and October. Principal components scores 120 
can be calculated from these hydrographs to compare expected RGSM performance under the two strategies. Note 121 
the log-scaled y-axis. 122 
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 123 

 124 

Figure S6. Example changes in PCA scores with alternative management strategies. Note that alternative scenario 125 
PCA scores are presented relative to each other and scaled to PCA loadings. Actual PCA scores have greater 126 
magnitude and have been compressed on x-axis to demonstrate relative changes (e.g., baseline PC1 = -1.18).  127 

 128 
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Figure S7. Expected catch of Rio Grande silvery minnow per 100m2 sampled under alternative flow management 129 
scenarios from Fig. S5. Thin and thick lines represent the 95% and 50% prediction intervals, respectively. Points 130 
indicate the median predicted values. 131 

 132 

Figure S8. Simulated probabilities of meeting different target CPUE thresholds for Rio Grande silvery minnow in 133 
the Middle Rio Grande under alternative flow management strategies. Exceedance probabilities are reported for 134 
the full Middle Rio Grande only here, not for individual reaches. 135 

 136 
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Alternative Model Structures 14 

 In addition to the base model presented in the main document, we examined three 15 

alternative model structures.  The alternative model structures include (1) the base model without 16 

the hurdle component, (2) the base model without the latent trend, and (3) the base model 17 

estimating CPUE of age-0 RGSM only with an additional effect of the previous year’s RGSM 18 

CPUE on the probability of presence at a sampling site. Additionally, we examined a model with 19 

the same underlying structure as the base model, but with both the hydrologic and flow timing 20 

indices (i.e., principal components 1 and 2; Appendix A). In this appendix, we present the details 21 

of teach alternative model structure, their fits to the observed data, as well as the results of 22 

simulation experiments (described in the methods of the main document) predicting RGSM 23 

response to different hydrologic conditions. Despite the different model structures, each model 24 

predicted generally similar RGSM responses to changing hydrologic conditions. As such, 25 

incorporating all of these models as alternative “states of nature” in a decision support 26 

framework would likely provide very similar strategy recommendations, though some subtle and 27 

important differences may arise, warranting the inclusion of multiple models. 28 
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 29 

Catch-only Model (No Hurdle Component) 30 

 The alternative model structure without the hurdle component alters the base model by 31 

excluding equations [1a] and [1b], only using the Gompertz function [2a] and gamma likelihood 32 

[2b] and [2c]. However, as the gamma distribution is not defined at 0, a small constant value 33 

(0.01) was added to all site-specific CPUE observations. 34 

 The catch-only model also fit the observed data fairly well, though more of the observed 35 

CPUE values fell outside of the 95% credible intervals (3.9%; Fig. S2.1) than did for the base 36 

model. The model predicts less variation in predicted CPUE among years with relatively high 37 

densities than the base model as well. 38 

 Parameter estimates for the catch-only model were more certain than for the base model 39 

(Fig. S2.2). As with the base model, expected CPUE increased in years with greater hydrologic 40 

indices (i.e., wetter years; Fig. S2.2ab). Unlike in the base model, estimated “carrying capacity” 41 

for each reach was well constrained and predicted to occur at relatively low hydrologic indices 42 

(Fig. S2.2b). Similar to the base model, San Acacia was predicted to have the highest “carrying 43 

capacity”, with Isleta expected to have a greater “carrying capacity” than Angostura (Fig. 44 

S2.2cd).  45 

 Simulation experiments predict all three reaches, as well as the MRG average, CPUE 46 

would meet recovery targets under below average hydrologic conditions from the period of 47 

record (Fig. S2.3a). This results from each reach being predicted to achieve its maximum 48 

expected catch under relatively modest flow conditions, with no benefit to increasing flows 49 

further (Fig. S2.3bcd). The range of predicted site-specific densities for each reach is much 50 

narrower than those predicted for the base model. Estimated probabilities of achieving lower 51 

CPUE targets for five consecutive years are lower and more similar among reaches than for the 52 

base model, but are greater than the base model for higher CPUE targets (Fig. S2.3e). 53 

 54 
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 55 

Figure S2.1. Predicted (boxplots) and observed (points) catch per 100m2 for Rio Grande silvery minnow in the 56 
Angostura (a), Isleta (b) and San Acacia (c) reaches for the no hurdle component model. The different widths of the 57 
boxplots represent the 95%, 50% and 10% prediction intervals.   58 
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 59 

Figure S2.2. Posterior distribution of the effect of annual hydrologic index on expected catch (a), the predicted 60 
mode of reach-specific RGSM catch per 100m2 when they are present (b) across a range of annual hydrologic 61 
indices (larger values indicate higher spring flows and less summer drying), the posterior distributions of MCMC 62 
samples for reach specific carrying capacity (c), and the posterior sample differences between reach specific 63 
carrying capacity estimates and the global mean value (d) for the no hurdle component model. The horizontal 64 
boxplot above (b) indicates the 95%, 50% and 10% ranges of observed hydrologic indices. Letters above boxes in 65 
(d) indicate significant differences 66 

  67 
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 68 

Figure S2.3. Probabilities of Rio Grande silvery minnow catch per 100m2  in each reach (colored lines) and across 69 
the whole MRG (black line) being greater than 1 across a range of annual hydrologic indices levels (a), and the 70 
predicted CPUE of Rio Grande silvery minnows at different hydrologic indices in the Angostura (b), Isleta (c) and 71 
San Acacia (d) reaches, and simulated probability of RGSM catch per 100m2 exceeding different target thresholds 72 
for five consecutive years under the range of hydrologic conditions in the dataset for the no hurdle component 73 
model. The horizontal boxplot above (a) indicates the 95%, 50% and 10% ranges of observed hydrologic indices and 74 
the horizontal dashed line indicates a 95% threshold. The polygons in (b-d) indicate the 95%, 90% and 50% 75 
simulation intervals and the line indicates the median predicted CPUE. Vertical dashed lines indicate different 76 
management targets. 77 

78 
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No Latent Trend Model 79 

 The alternative model structure without latent trend alters the base model by modifying 80 

equation [1a] to be: 81 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑦) = 𝛼𝑟 + 𝜷𝒑𝝋𝒓𝒚 

𝛼𝑟~𝑁(𝜇𝛼, 𝜎𝛼
2) 

 

(1a) 

all other model components are the same as in the base model. 82 

 The no latent trend model also fit the observed data well, capturing the same number of 83 

observed CPUE values within the 95% credible intervals (97.6%; Fig. S2.4) as the base model. 84 

The predicted distributions for annual site-specific CPUE are very similar to those from the base 85 

model. The no latent trend model predicted annual probabilities of presence with narrower 86 

credible intervals than did the base model, and the 95% credible intervals were less likely to 87 

include the observed values (Fig. S2.5). 88 

 Parameter estimates for the no latent trend model were similar for the catch component, 89 

but more certain for the hurdle component than for the base model (Fig. S2.6abcd). As with the 90 

base model, expected CPUE and expected probability of presence both increased in years with 91 

greater hydrologic indices (i.e., wetter years; Fig. S2.6ab). Estimated “carrying capacity” for 92 

each reach had similar levels of uncertainty to the base model (Fig. S2.6c). Estimates of the 93 

baseline probability of presence (in logit space) were more constrained in the no latent trend 94 

model than in the base model (Fig. S2.6d). Similar to the base model, San Acacia was predicted 95 

to have the highest “carrying capacity”, with Isleta expected to have a similar value as Angostura 96 

(Fig. S2.6e). Additionally, San Acacia was estimated to have he greatest baseline probability of 97 

presence, while Isleta had greater probability of presence than Angostura (Fig. S2.6f)  98 

 Simulation experiments predict both San Acacia and Isleta, as well as the MRG average, 99 

CPUE would meet recovery targets under slightly below median hydrologic conditions from the 100 

period of record (Fig. S2.7a). Angostura is predicted to achieve the recovery threshold with 95% 101 

confidence only under slightly above median hydrologic conditions. The distribution of predicted 102 

CPUE values for each reach increases across the range of hydrologic conditions examined (Fig. 103 

S2.7bcd). The range of predicted site-specific densities for each reach is very similar to those 104 

predicted for the base model. Estimated probabilities of achieving CPUE targets for five 105 

consecutive years is also very similar to the base model (Fig. S2.7e). 106 

 107 
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 108 

Figure S2.4. Predicted (boxplots) and observed (points) catch per 100m2 for Rio Grande silvery minnow in the 109 
Angostura (a), Isleta (b) and San Acacia (c) reaches for the no latent trend model. The different widths of the 110 
boxplots represent the 95%, 50% and 10% prediction intervals.  111 
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 112 

Figure S2.5. Predicted (boxplots) and observed (points) annual encounter probabilities for Rio Grande silvery 113 
minnow in the Angostura (a), Isleta (b) and San Acacia (c) reaches for the no latent trend model. The different 114 
widths of the boxplots represent the 95%, 50% and 10% prediction intervals.  115 
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 116 

Figure S2.6. Predicted mode of reach-specific RGSM catch per 100m2 when they are present (a) and reach-specific 117 
probability of encountering RGSM (b) across a range of annual hydrologic indices (larger values indicate higher 118 
spring flows and less summer drying), and the posterior distributions of MCMC samples for reach specific carrying 119 
capacity (c) and baseline encounter probability (d) parameters for the no latent trend model. Posterior distribution of 120 
reach specific differences in K (e) and α (d) from the global mean value. The horizontal boxplot above (a) and (b) 121 
indicates the 95%, 50% and 10% ranges of observed hydrologic indices. Letters above boxes in (e) and (f) indicate 122 
significant differences.   123 



Appendix B  Walsworth and Budy 

10 
 

 124 

Figure S2.7. Probabilities of Rio Grande silvery minnow catch per 100m2  in each reach (colored lines) and across 125 
the whole MRG (black line) being greater than 1 across a range of annual hydrologic indices levels (a), and the 126 
predicted CPUE of Rio Grande silvery minnows at different hydrologic indices in the Angostura (b), Isleta (c) and 127 
San Acacia (d) reaches, and simulated probability of RGSM catch per 100m2 exceeding different target thresholds 128 
for five consecutive years under the range of hydrologic conditions in the dataset for the no latent trend model. The 129 
horizontal boxplot above (a) indicates the 95%, 50% and 10% ranges of observed hydrologic indices and the 130 
horizontal dashed line indicates a 95% threshold. The polygons in (b-d) indicate the 95%, 90% and 50% simulation 131 
intervals and the line indicates the median predicted CPUE. Vertical dashed lines indicate different management 132 
targets. 133 
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 134 

Age-0 Model 135 

 The alternative model structure estimating age-0 RGSM abundance alters the base model 136 

by modifying equation [1a] to be: 137 

 
𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑦) = 𝛼𝑟 + 𝜷𝒑𝝋𝒓𝒚 +

𝛽𝐿
𝐿 + .01

 

𝛼𝑟~𝑁(𝜇𝛼, 𝜎𝛼
2) 

(1a) 

where L is the mean CPUE for all RGSM in the October samples from the previous year, and βL 138 

is an estimated parameter. Additionally, 𝐶𝑟𝑦 no longer represents the site-specific CPUE of all 139 

RGSM, but only the age-0 RGSM. All other model components are the same as in the base 140 

model. 141 

 The age-0 model also fit the observed data well, capturing the nearly same number of 142 

observed CPUE values within the 95% credible intervals (97.3%; Fig. S2.8) as the base model. 143 

The age-0 trend model predicted annual probabilities of presence with narrower credible 144 

intervals than did the base model, and the 95% credible intervals were less likely to include the 145 

observed values (Fig. S2.9). 146 

 As with the base model, expected CPUE and expected probability of presence for the 147 

age-0 model both increased in years with greater hydrologic indices (i.e., wetter years; Fig. 148 

S2.10ab). Estimated “carrying capacity” for each reach had similar levels of uncertainty to the 149 

base model (Fig. S2.10c). Estimates of the baseline probability of presence (in logit space) were 150 

more constrained than in the base model (Fig. S2.10d). Similar to the base model, San Acacia 151 

was predicted to have the highest “carrying capacity”, with Isleta expected to have greater 152 

“carrying capacity” than Angostura (Fig. S2.10e). Additionally, San Acacia was estimated to 153 

have the greatest baseline probability of presence, while Isleta had greater probability of 154 

presence than Angostura (Fig. S2.10f)  155 

 Simulation experiments from the age-0 model predict both San Acacia and Isleta, as well 156 

as the MRG average, CPUE would meet recovery targets under near median hydrologic 157 

conditions from the period of record (Fig. S2.11a). Angostura is predicted to achieve the 158 

recovery threshold with 95% confidence under slightly above average hydrologic conditions. 159 

The distribution of predicted CPUE values for each reach increases across the range of 160 

hydrologic conditions examined, though the rate of increase slows once annual hydrologic 161 

indices reach values greater than 1 (Fig. S2.11bcd). However, large uncertainties in the carrying 162 

capacity parameter estimates drive increasing variation in prediction intervals under higher 163 

hydrologic indices. The range of predicted site-specific densities for each reach is lower than 164 

those predicted for the base model. Estimated probabilities of achieving CPUE targets for five 165 

consecutive years is very similar to the base model, when assuming the previous year had 166 

average densities (Fig. S2.11e). However, when the previous year’s RGSM density was very low 167 
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(i.e., zero), the probability of exceeding different target CPUE thresholds is reduced (Fig. 2.12). 168 

The effect of the previous year’s CPUE rapidly diminishes as previous CPUE rises above zero. 169 

 170 

 171 

Figure S2.8. Predicted (boxplots) and observed (points) catch per 100m2 for Rio Grande silvery minnow in the 172 
Angostura (a), Isleta (b) and San Acacia (c) reaches for the age-0 model. The different widths of the boxplots 173 
represent the 95%, 50% and 10% prediction intervals. 174 
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 175 

Figure S2.9. Predicted (boxplots) and observed (points) annual encounter probabilities for Rio Grande silvery 176 
minnow in the Angostura (a), Isleta (b) and San Acacia (c) reaches for the age-0 model. The different widths of the 177 
boxplots represent the 95%, 50% and 10% prediction intervals.  178 
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 179 

Figure S2.10. Predicted mode of reach-specific RGSM catch per 100m2 when they are present (a) and reach-180 
specific probability of encountering RGSM (b) across a range of annual hydrologic indices (larger values indicate 181 
higher spring flows and less summer drying), and the posterior distributions of MCMC samples for reach specific 182 
carrying capacity (c) and baseline encounter probability (d) parameters for the age-0 model. Posterior distribution of 183 
reach specific differences in K (e) and α (d) from the global mean value. The horizontal boxplot above (a) and (b) 184 
indicates the 95%, 50% and 10% ranges of observed hydrologic indices. Letters above boxes in (e) and (f) indicate 185 
significant differences.   186 
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 187 

Figure S2.11. Probabilities of Rio Grande silvery minnow catch per 100m2  in each reach (colored lines) and across 188 
the whole MRG (black line) being greater than 5 across a range of annual hydrologic index levels (a), and the 189 
predicted CPUE of Rio Grande silvery minnows at different hydrologic indices in the Angostura (b), Isleta (c) and 190 
San Acacia (d) reaches, and simulated probability of RGSM catch per 100m2 exceeding different target thresholds 191 
for three consecutive years under the range of hydrologic conditions (e) in the dataset for the age-0 model. The 192 
horizontal boxplot above (a) indicates the 95%, 50% and 10% ranges of observed hydrologic indices and the 193 
horizontal dashed line indicates a 95% threshold. The polygons in (b-d) indicate the 95%, 90% and 50% simulation 194 
intervals and the line indicates the median predicted CPUE. Vertical dashed lines indicate different management 195 
targets. 196 
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 197 

Figure S2.12. Filled contour plots of the probability of exceeding different target CPUE thresholds under different 198 
annual hydrologic indices (y-axes) and different densities of RGSM in the previous year (x-axes). Predictions for the 199 
different reaches are organized by column: Angostura (far left), Isleta (center left), San Acacia (center right), and 200 
total MRG (far right). Predictions for different CPUE targets are organized by row: target CPUE of 0.3 RGSM per 201 
100m2 (top), target CPUE of 1 RGSM per 100m2 (center), and target CPUE of 5 RGSM per 100m2 (bottom). 202 

 203 

 204 

Base Model structure incorporating both the Hydrologic and Flow Timing Indices 205 

 The base model incorporating both the annual hydrologic and flow timing indices fit 206 

predicted very similar CPUE dynamics as the base model incorporating only the hydrologic 207 

index (Figs. S2.13 and S2.14), and the predicted site-specific CPUE distributions captured 97.3% 208 

of the observed CPUE values. The model estimated a positive effect of the annual hydrologic 209 

index and a negative effect of the annual flow timing index on both presence and density of 210 

RGSM (i.e., later spring high flow peaks and less summer drying result in increased expected 211 

RGSM CPUE; Fig. S2.15abcd). As in the base model, the latent trend demonstrated a roughly 212 

decadal periodic pattern (Fig. S2.15e). 213 



Appendix B  Walsworth and Budy 

17 
 

 Estimated reach-specific “carrying capacities” were smaller than those estimated in the 214 

base model (Fig. S2.16a), though estimated baseline probabilities of presence (in logit space) 215 

were similar to the base model (Fig. S2.16b). Additionally, San Acacia had a significantly 216 

greater “carrying capacity” and baseline probability of presence than the other two reaches, and 217 

Isleta had a significantly greater “carrying capacity” and baseline probability of presence than 218 

Angostura (Fig. S2.16cd). 219 

 The estimated probability of exceeding a range of CPUE targets across five consecutive 220 

years under hydrologic conditions drawn from the period of record was slightly lower than 221 

estimated for the base model, though the trends among reaches were very similar (Fig. S2.16e). 222 

The annual hydrologic index had a greater impact on the probability of meeting CPUE targets 223 

within a single year than did the flow timing index (Fig. S2.17), though both drivers caused 224 

substantial changes in exceedance probability. However, while we explored the same range of 225 

values across both indices in our simulations, the range of observed values on the flow timing 226 

index were narrower than for the hydrologic index and both were narrower than the range 227 

simulated. 228 

 229 

 230 
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 231 

Figure S2.13. Predicted (boxplots) and observed (points) catch per 100m2 for Rio Grande silvery minnow in the 232 
Angostura (a), Isleta (b) and San Acacia (c) reaches for the base model incorporating both the annual hydrologic and 233 
flow timing indices. The different widths of the boxplots represent the 95%, 50% and 10% prediction intervals.  234 

 235 
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 236 

Figure S2.14. Predicted (boxplots) and observed (points) annual encounter probabilities for Rio Grande silvery 237 
minnow in the Angostura (a), Isleta (b) and San Acacia (c) reaches for the base model incorporating both the annual 238 
hydrologic and flow timing indices. The different widths of the boxplots represent the 95%, 50% and 10% 239 
prediction intervals. 240 

  241 
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 242 

Figure S2.15. Posterior distributions of parameter estimates from the base model incorporating both the annual 243 
hydrologic and flow timing indices for the effect of the annual hydrologic index on density (a) and presence (b), the 244 
effect of the flow timing index on density (c) and presence (d), and annual values of the latent trend (e). Shaded grey 245 
boxes in panels a-d indicate the 95% credible intervals and the vertical dashed line indicates the median parameter 246 
estimate. For the latent trend, the light (dark) grey polygon indicates the 95% (50%) credible interval and the solid 247 
grey line indicates the median estimate.  248 
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 249 

Figure S2.16. Posterior distributions of MCMC samples for reach specific carrying capacity (a) and baseline 250 
encounter probability (b) parameters for the base model incorporating both the annual hydrologic and flow timing 251 
indices, posterior distribution of reach specific differences in K (c) and α (d) from the global mean value, and 252 
simulated probability of RGSM catch per 100m2 exceeding different target thresholds for five consecutive years 253 
under the range of hydrologic conditions (e) in the dataset for the base model incorporating both the annual 254 
hydrologic and flow timing indices. Letters above boxes in (c) and (d) indicate significant differences.   255 
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 256 

Figure S2.17. Filled contour plots of the probability of exceeding different target CPUE thresholds under different 257 
annual hydrologic indices (y-axes; positive values indicate larger spring high flow events and less summer drying) 258 
and annual flow timing indices (x-axes; positive values indicate earlier spring high flow peaks and more summer 259 
drying) from the base model incorporating both the annual hydrologic and flow timing indices. Predictions for the 260 
different reaches are organized by column: Angostura (far left), Isleta (center left), San Acacia (center right), and 261 
total MRG (far right). Predictions for different CPUE targets are organized by row: target CPUE of 0.3 RGSM per 262 
100m2 (top), target CPUE of 1 RGSM per 100m2 (center), and target CPUE of 5 RGSM per 100m2 (bottom). 263 

 264 
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Response to Reviewer Comments on Draft Report 

Hydrologic controls on abundance and distribution of the endangered Rio Grande 
silvery minnow in the Middle Rio Grande 

 
Authors: Timothy E. Walsworth and Phaedra Budy 

 

In May 2020, we submitted a second draft report of our analysis of the hydrologic controls on the 
abundance and distribution of Rio Grande Silvery Minnow in the Middle Rio Grande to the U.S. 
Bureau of Reclamation Albuquerque Office, which was shared with other stakeholders, 
management agencies and collaborators. We received valuable feedback from one reviewer, 
whose comments were very insightful and addressing their concerns has tightened our report.  

Below, we address each of the reviewer’s comments which required a response. Reviewer 
comments are presented as numbered items, followed by our response in bold. 

 

 
Reviewer Comments 
Thank you for the opportunity to review and provide comments on the Final Report “Hydrologic 
controls on abundance and distribution of the endangered Rio Grande silvery minnow in the 
Middle Rio Grande” by Drs. Timothy E. Walsworth and Phaedra Budy of Utah State University.   

The comments provided below address the Phase 2 Final Report to the Bureau of Reclamation, 
dated May 8, 2020 (Walsworth and Budy 2020a), and the associated Appendix A (Walsworth 
and Budy 2020b) and Appendix B (Walsworth and Budy 2020c). 

General Comments:  

1. Drs. Walsworth and Budy have done an excellent job of developing a mathematical 
model that will help Reclamation and the Collaborative Program evaluate hydrologic 
control options for the Middle Rio Grande. The Final Report and associated appendices 
are very informative and will help stakeholders make decisions that better balance water 
management with conservation of the endangered Rio Grande Silvery Minnow. 

2. The NMISC appreciates the through manner in which Drs. Walsworth and Budy have 
addressed our previous comments on the Draft Report, particularly the comment on 
timing of spring runoff. We note that PC2 is referenced as the “flow timing index” in the 
Final Report and further explained in Appendix A as a way to use the model to possibly 
evaluate the timing or spring runoff. We look forward to further evaluation of the timing, 
magnitude, and duration of spring runoff. 

a. In addition to the description in Appendix A, we also explore the predictive 
ability of the flow timing index in Appendix B. As that model had much 



2 
 

weaker support by WAIC, we focus the main document on the models 
incorporating only the hydrologic index. 

3. The NMISC supports further development and implementation of this model, and 
continued collaboration with the “Integrated Population Model for Rio Grande Silvery 
Minnow” being developed by Dr. Charles Yackulic (2018).  

4. This Final Report is a valuable document that is well written and well-reasoned. One 
over-riding concern that we have is use of the 5 fish/100 m2 as the metric for species 
recovery. As noted in our earlier comments, this metric was not developed quantitatively 
or from a demographic modeling process. It was decided as a consensus of the authors of 
the 2010 Recovery Plan for the Rio Grande Silvery Minnow (USFWS 2010). The authors 
used a RAMAS Population Viability Analysis (PVA) to derive estimates of carrying 
capacity, but did not derive the 5 fish/100 m2 from that PVA. It is unknown if the metric 
is a realistic index of population abundance necessary for recovery, and merits evaluation 
before it is further used in evaluating actions necessary for recovery. 

a. We report the probabilities of meeting a range of October CPUE targets in 
subsequent figures. As we are not attempting to identify what CPUE targets 
would indicate recovery, but instead developing a model that can estimate 
under what conditions any given recovery target is likely to be met, we 
believe our analyses are highly valuable. We have shifted the focus of the 
analyses to the 1 RGSM per 100 m2 target, though we still discuss the 
recovery target. As this is the target set in the official recovery plan, we 
believe it deserves treatment in our analysis. 

5. The model examines the probability of individual reaches achieving a range of CPUE 
targets for three consecutive years under contemporary hydrologic conditions. The 
downlisting criteria for the Recovery Plan (USFWS 2010) specifies that the October 
CPUE from all monitoring sites within each reach should be > 5 fish/100 m2 for “at least 
5 consecutive years.” If the model is to be used to evaluate the 5 fish/100 m2 in the 
context of recovery, we suggest running the hydrology scenarios for 5 and not 3 years. 

a. We thank the reviewer for the clarification. We re-ran this analysis for five 
consecutive years instead of three. The general patterns remained the same, 
though probabilities of exceeding the different management and conservation 
thresholds decreased, as expected. All figures and text have been updated. 

6. The model determined that 5 fish/100 m2 for three consecutive years could be met in the 
San Acacia and Isleta reaches under a range of flows currently seen in the MRG. It would 
be helpful for water managers to have the flow index translated to a flow exceedance 
analysis to better understand the range of flows necessary to achieve the criteria. This 
should be done for five consecutive years. 
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a. We agree that such a hydrologic analysis would be beneficial to managers, 
but it is beyond the scope of this report. It could potentially be incorporated 
into the third phase of this project. 

7. The prior report by Budy and Walsworth (2019) provided a comprehensive analytical 
review of the discharge to CPUE relationship used to derive the criteria for genetic 
viability (0.3 fish/100 m2) and demographic self-sustainability (1.0 fish/100 m2) for the 
RGSM.  These criteria, as identified in Appendix A of the 2016 BiOp (USFWS 2016), 
are used as levels of “incidental take” not to be exceeded by the Proposed Action. These 
are the criteria that we would like to see evaluated, rather than the criteria of the 
Recovery Plan, which have no basis in development. 

a. We have changed the figures to focus on the 1 RGSM per100 m2. We still 
reference multiple different targets in some figure panels and in the 
discussion, but the focus is now on the threshold of 1. 

8. The latent trend analysis showed the strong influence of an unknow and unobserved 
driver that may be related to regional climate variation or spawner-recruit dynamics. We 
hope that future evaluations with this model will help to identify and parse this driver, as 
either of the identified possible relations are important in the context of water and species 
management. 

a. We would like to explore this further in future analyses (potentially in Phase 
3). We have attempted to examine one of the possible drivers (spawner 
abundance/carryover) in Appendix B. 

Specific Comments:  

1. On lines 159 and 160 of the Final Report, the statement is made that “Newly recruited 
age-0 RGSM become available to capture in the fall and summer low flow conditions 
have generally abated by this time.” This sentence is confusing, as the age-0 RGSM first 
recruit into the seine gear in June or July, as can be seen in the database. 

a. We thank the reviewer for the suggestion and have changed this sentence to 
“Newly recruited age-0 RGSM have survived the harshest summer drying 
conditions, flow variability is lowest, and are available for capture by 
sampling crews.” 

2. Between lines 173 and 191, it should be clearly stated that the drying metric used is an 
index of drying and not a reflection of actual length and duration of drying. 

a. We have added a sentence “While this metric provides a useful index of 
summer drying, it does not indicate the actual length and duration of 
drying.” 

3. On lines 207 and 208, it is unclear if the capture probability corresponds to actual p-hat 
or to the occurrence of RGSM in mesohabitats. Low occurrence and CPUE of RGSM 
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from runs and riffles may be more of a reflection of numbers of fish present in those 
habitats, rather than capture probability. 

a. We have added a sentence to the end of this paragraph “While the 
probability of capturing RGSM likely varies among mesohabitats (due to 
depth, velocity, connectivity), this model does not explicitly account for this 
variation as mesohabitat samples are combined by site in our analysis. Any 
variation in capture probabilities among mesohabitat types or differences in 
mesohabitat composition among sites will be accounted for in the variance of 
𝒑𝒓𝒚.” 

4. In lines 226 to 228, it would be helpful to point out that the analysis was done for only 
October samples, a time when flow variability is the lowest. The assumption that catch 
rate and capture probability are not impacted by discharge at the time of sampling would 
not apply to other months of the year. 

a. We have clarified that we are modeling October CPUE. Additionally, we now 
describe the benefits of low flow variability in the previous paragraph, and 
that any remaining effect of discharge on capture probability will be 
accounted for in the parameter variance. 

5. On lines 368 to 370, an important part of water management in the MRG will be to 
reconcile where to put water--in the spring for higher or longer runoff, or in summer to 
reduce rate, extent, and duration of drying. It would be helpful if future modeling 
exercises could include this analysis, as it is probably one of the most important aspects 
of water management in the MRG. 

a. We agree that this will be an important part of water management decisions 
and fully intend to incorporate this trade-off as part of the analysis in Phase 
3. We describe the benefits of exploring alternative management scenarios in 
the final two paragraphs of the discussion. 

6. On lines 380 to 384, the idea of large-scale experimentation may be possible in a system 
with hydrological flexibility, but this is not likely in the MRG. Instead of designed 
experiments, the better approach will be condition-dependent experiments. 

a. We plan to explore both condition-dependent and large-scale experimental 
approaches in Phase 3 of this project. If simulations identify a large-scale 
experimental approach that is logistically challenging but expected to 
provide benefits for both RGSM populations and off-stream water users, 
managers and stakeholders can then determine if they want to attempt such 
an experiment. 

7. On lines 388 to 390, comparing the Angostura Reach with the other reaches during 
drying is an interesting way to look at the reaches. Another important consideration is the 
offsetting effect that habitat restoration in the Angostura Reach could have on CPUE. 
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a. As we have not modeled habitat restoration explicitly in our models we do 
not discuss it here, though the reviewer is correct that habitat restoration 
may allow Angostura to produce more RGSM than it currently does under 
the same hydrologic conditions. However, the scale at which such restoration 
would be required to elicit a population level response is potentially very 
large. 

8. On lines 407 to 411, the finding that CPUE and annual flows are non-linear is important 
given that better water management options may be available within the range of 
observed discharges. We look forward to further evaluation of this aspect of water 
management. 

a. We agree that this is an important result and it will be on of the foci of our 
Phase 3 analyses. 




