Rio Grande Silvery Minnow Hydrobiological Analysis: Draft Results

Timothy Walsworth^{1,2} Phaedra Budy^{1,3}

¹Department of Watershed Sciences

²Ecology Center

³U.S. Geological Survey Utah Cooperative Fish and Wildlife Research Unit

Utah State University

Logan, UT

January 27, 2020

U.S. Bureau of Reclamation, Albuquerque Office

Rio Grande silvery minnow

- Endemic species adapted to historical, dynamic habitat
- Floodplain rearing habitats
- Hydrologic and geomorphic changes limit availability of these habitats

Photos from: Medley and Shirey (2013) Ecohydrology, Volume: 6, Issue: 3, Pages: 491-505, First published: 04 March 2013, DOI: (10.1002/eco.1373)

Rio Grande silvery minnow

- Population declines and range contraction drive ESA listing
- Federal water management projects require assessment of potential impacts to RGSM

Photos from: Medley and Shirey (2013) Ecohydrology, Volume: 6, Issue: 3, Pages: 491-505, First published: 04 March 2013, DOI: (10.1002/eco.1373)

How can we manage water resources to conserve/ restore RGSM?

• How does the MRG population of RGSM respond to hydrologic changes?

2016 Biological Opinion HBO Analyses

- Explored relationships between RGSM catch per unit effort (CPUE) and hydrology
- CPUE positively related to flood metrics, negatively related to low flow metrics
- Used to predict RGSM response to future conditions
- USU contracted to review HBO analyses and provide suggestions for improvements

- Account for correlated predictors
- Disaggregate catch data
- Reach-specific responses to hydrologic conditions
- Different indices of drying and flooding conditions
- Account for temporal autocorrelation
- Alternative model structures to produce realistic catch values

- Account for correlated predictors
- Disaggregate catch data
- Reach-specific responses to hydrologic conditions
- Different indices of drying and flooding conditions
- Account for temporal autocorrelation
- Alternative model structures to produce realistic catch values

Averaged By:

- Account for correlated predictors
- Disaggregate catch data
- Reach-specific responses to hydrologic conditions
- Different indices of drying and flooding conditions
- Account for temporal autocorrelation
- Alternative model structures to produce realistic catch values

- Account for correlated predictors
- Disaggregate catch data
- Reach-specific responses to hydrologic conditions
- Different indices of drying and flooding conditions
- Account for temporal autocorrelation
- Alternative model structures to produce realistic catch values

- Account for correlated predictors
- Disaggregate catch data
- Reach-specific responses to hydrologic conditions
- Different indices of drying and flooding conditions
- Account for temporal autocorrelation
- Alternative model structures to produce realistic catch values

- Account for correlated predictors
- Disaggregate catch data
- Reach-specific responses to hydrologic conditions
- Different indices of drying and flooding conditions
- Account for temporal autocorrelation
- Alternative model structures to produce realistic catch values

- Account for correlated predictors
- Disaggregate catch data
- Reach-specific responses to hydrologic conditions
- Different indices of drying and flooding conditions
- Account for temporal autocorrelation
- Alternative model structures to produce realistic catch values

Flow Index

Incorporating suggested analytical changes

- How does RGSM distribution and abundance change under different hydrologic conditions?
 - What hydrologic conditions drive RGSM distribution/abundance?
- How likely are recovery goals to be met under different hydrologic conditions?
 - Single year

Broad Approach

- Generate composite metric of flooding intensity
- Generate more responsive drying metric
- Generate metric of flood timing
- Compare multiple models incorporating different hydrologic metrics

Accounting for correlated predictors with a new, integrated flood index

• Highly correlated hydrologic metrics

Accounting for correlated predictors with a new, integrated flood index

- Highly correlated hydrologic metrics
- Principal components analysis (PCA) finds dominant axes of variation
- PC1 explains 78% of variance in data
- Index of flood magnitude/ duration*
 - Also incorporates low flow information

More responsive drying Index

- RiverEyes data
- Mile-days dry
 - 24 miles dry for 10 days = 240 mile-days dry
- Predict mile-days dry from summer channel acres to fill in data gaps

Year

Disaggregating catch data

- Pooled seine hauls by sample site
- Demonstrates variance in catch rates
- Years with large average CPUE are driven by few very large catch events

Modeling framework

- Predict site-specific presence and CPUE of RGSM
- Predict presence, then if present, predict CPUE
- Allow populations to respond uniquely to hydrologic conditions in each reach
- Account for temporal autocorrelation
- Account for theoretical carrying capacity

- Hurdle Model (two-step)
 - 1. Probability of non-zero catch
 - 2. Predicted CPUE given it is greater than zero
- Reach specific baseline probability of presence, α_r (logit scale)
- Latent trend (unobserved driver), w_y

$$logit(p_{ry}) = \alpha_r + \beta_p \varphi_{ry} + w_y$$

$$\alpha_r \sim N(\mu_{\alpha}, \sigma_{\alpha}^2)$$

$$w_y \sim N(w_{y-1}, 1)$$

$$I(C_{ry} > 0) \sim Bernoulli(p_{ry})$$

- Hurdle Model (two-step)
 - 1. Probability of non-zero catch
 - 2. Predicted CPUE given it is greater than zero
- Gompertz relationship

$$C_{ry} = K_r e^{-\beta_o e^{-\beta_c \delta_y}}$$

- Hurdle Model (two-step)
 - 1. Probability of non-zero catch
 - 2. Predicted CPUE given it is greater than zero
- Gompertz relationship
- Reach specific "carrying capacity", K_r
- Gamma distributed errors
 - Continuous, positive values

$$C_{ry} = K_r e^{-\beta_o e^{-\beta_c \delta_y}}$$

$$K_r \sim N(\mu_K, \sigma_K^2)$$

$$\sigma_{ry} = c\nu \times C_{ry}$$

$$\gamma_{ry} = 1 + \theta_{ry} C_{ry}$$

$$\theta_{ry} = \frac{C_{ry} + \sqrt{C_{ry} + 4\sigma_{ry}^2}}{2\sigma_{ry}^2}$$

$$(C_{ry}|C_{ry} > 0) \sim \Gamma(\gamma_{ry}, \theta_{ry})$$

- Hurdle Model (two-step)
 - 1. Probability of non-zero catch
 - 2. Predicted CPUE given it is greater than zero

 $E(C_{iry}) = I(C_{ry} > 0) \times (C_{ry} | C_{ry} > 0)$

$$logit(p_{ry}) = \alpha_r + \beta_p \varphi_{ry} + w_y$$
$$w_y \sim N(w_{y-1}, 1)$$
$$\alpha_r \sim N(\mu_\alpha, \sigma_\alpha^2)$$
$$I(C_{ry} > 0) \sim Bernoulli(p_{ry})$$

$$C_{ry} = K_{r}e^{-\beta_{o}e^{-\rho_{c}\sigma_{y}}}$$

$$K_{r} \sim N(\mu_{K}, \sigma_{K}^{2})$$

$$\sigma_{ry} = cv \times C_{ry}$$

$$\gamma_{ry} = 1 + \theta_{ry}C_{ry}$$

$$\theta_{ry} = \frac{C_{ry} + \sqrt{C_{ry} + 4\sigma_{ry}^{2}}}{2\sigma_{ry}^{2}}$$

$$C_{ry}|C_{ry} > 0) \sim \Gamma(\gamma_{ry}, \theta_{ry})$$

Models explored

- Presence model p(*metric*)
- Catch model C(*metric*)
- Metrics
 - PC1
 - PCA axis 1
 - Flood magnitude, duration, summer flows
 - Flood peak timing
 - Mile-days dry

	Presence	Catch	
	Component	Component	
1	PC1	PC1	
2	Timing	Timing	
3	Mile-days dry + PC1	PC1	
4	Mile-days dry	Timing	
5	Mile-days dry	PC1	

Model comparison

	Presence	Catch		
	Component	Component	WAIC	ΔWAIC
1	PC1	PC1	6477	0
2	Timing	Timing	10493	4016
3	Mile-days dry + PC1	PC1	15601	9124
4	Mile-days dry	Timing	15618	9141
5	Mile-days dry	PC1	15667	9190

• Model with flood magnitude predicting both presence and catch fits data MUCH BETTER than all other models.

 $E(C_{ry}) = I(C_{ry} > 0) \times (C_{ry} | C_{ry} > 0)$

Predicted CPUE

- Distributions of predicted catches capture >95% of observations
- Struggles to capture rare high catches
- Higher predicted catches in years with large floods
- Higher, more variable catches in San Acacia than Isleta or Angostura

Parameter Estimates

- Presence
- Increased probability of capture in years with larger floods

- San Acacia has greatest baseline probability of catching RGSM at any given site
 - Less flooding required to increase probability of capture in San Acacia

Parameter Estimates

- Presence

- Increased probability of capture in years with larger floods
- San Acacia has greatest baseline probability of catching RGSM at any given site
 - Less flooding required to increase probability of capture in San Acacia

Parameter Estimates – Presence – Latent Trend

 Periodic pattern in catch probability not captured by drying conditions

$$logit(p_{ry}) = \alpha_r + \beta_p \varphi_{ry} + w_y$$

$$w_y \sim N(w_{y-1}, 1)$$

- Accounting for one or more unobserved drivers of variation, possibly including:
 - Prior year's distribution carrying over?
 - Large-scale climatic conditions?
 - PDO
 - ENSO

Predicted probability of presence

- Lower in years with small floods
- Periodic pattern driven by latent trend

$$logit(p_{ry}) = \alpha_r + \beta_p \varphi_{ry} + w_y$$

Parameter Estimates – Catch

- Larger floods increase the mean expected catch at a given sampling site
- San Acacia has highest predicted carrying capacity
 - Large uncertainties

0.00

0.25

β_c

0.50

Parameter Estimates – Catch

- Larger floods increase the mean expected catch at a given sampling site
- San Acacia has highest predicted carrying capacity
 - Large uncertainties
- San Acacia has greatest expected catch

 $C_{ry} = K_r e^{-\beta_o e^{-\beta_c \delta_y}}$

Simulation Experiment

- What is the probability of meeting recovery goal CPUE given different flood conditions?
 - Proportion of simulated CPUEs greater than 5 RGSM per 100m²
 - Single year!
 - Useful tool for exploring alternative management options

Effect of Drying -Presence

- Model had less support by WAIC than PC1 model
 - *Remember: PC1 incorporates flood and low flow information*
- Demonstrates strong support for negative effect of summer drying on RGSM presence
 - San Acacia has greatest baseline probability of catching RGSM at any given site
 - Model suggests more drying required to reduce catch probability in San Acacia

Implications

- Larger floods increase productivity of RGSM
 - Increases abundance and distribution

- Contemporary hydrologic backdrop can provide suitable conditions *periodically*
 - Frequency needs to be increased for recovery
 - Habitat restoration?
 - Managed flood flows?

- Summer drying extent appears less important as predictor of RGSM, but it is related to flooding
 - Minimizing drying will be beneficial
- Model provides a tool for exploring performance of alternative management approaches under uncertain future hydrologic conditions

Next Steps

- What is driving the latent trend?
 - Spawning biomass
 - Large-scale climatic indices (PDO, ENSO, etc.)
- Management strategy evaluation to inform adaptive management
- Explore trade-offs with other water management objectives

Acknowledgments

- Funding: U.S. Bureau of Reclamation, U.S Geological Survey (in-kind)
- Ashlee Rudolph, Eric Gonzalez, Jennifer Bachus, Kenneth Richard, Joel Lusk, Michael Porter, Rich Valdez, Robert Dudley, Steve Platania, Charles Yackulic
- Fish Ecology Lab at USU
- Lake Ecology Lab at USU
- Ecology Center at USU

Predicted CPUE

