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Rio Grande silvery minnow

• Endemic species adapted to 
historical, dynamic habitat

• Floodplain rearing habitats

• Hydrologic and geomorphic 
changes limit availability of 
these habitats

2

Photo: fws.gov

Photos from: Medley and Shirey (2013) Ecohydrology, 

Volume: 6, Issue: 3, Pages: 491-505, First published: 04 

March 2013, DOI: (10.1002/eco.1373) 



Rio Grande silvery minnow

• Population declines and 
range contraction drive 
ESA listing

• Federal water 
management projects 
require assessment of 
potential impacts to RGSM 
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How can we manage water resources to 
conserve/ restore RGSM?

• How does the MRG population of RGSM respond to hydrologic changes?
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2016 Biological Opinion HBO Analyses

• Explored relationships between RGSM 
catch per unit effort (CPUE) and 
hydrology

• CPUE positively related to flood 
metrics, negatively related to low flow 
metrics

• Used to predict RGSM response to 
future conditions

• USU contracted to review HBO analyses 
and provide suggestions for 
improvements
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Suggestions from USU 2019 Review of HBO 
Analyses
• Account for correlated predictors

• Disaggregate catch data

• Reach-specific responses to hydrologic 
conditions

• Different indices of drying and flooding 
conditions

• Account for temporal autocorrelation

• Alternative model structures to 
produce realistic catch values
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Suggestions from USU 2019 Review of HBO 
Analyses

Angostura Reach

Isleta Reach

San Acacia Reach

• Account for correlated predictors

• Disaggregate catch data

• Reach-specific responses to hydrologic 
conditions

• Different indices of drying and flooding 
conditions

• Account for temporal autocorrelation

• Alternative model structures to 
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Incorporating suggested analytical changes

• How does RGSM distribution and 
abundance change under 
different hydrologic conditions?
• What hydrologic conditions drive 

RGSM distribution/abundance?

• How likely are recovery goals to 
be met under different hydrologic 
conditions?
• Single year
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Broad Approach

• Generate composite metric of 
flooding intensity

• Generate more responsive drying 
metric

• Generate metric of flood timing

• Compare multiple models 
incorporating different hydrologic 
metrics
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Accounting for correlated predictors with a 
new, integrated flood index

• Highly correlated hydrologic 
metrics
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Accounting for correlated predictors with a 
new, integrated flood index

• Highly correlated hydrologic 
metrics

• Principal components analysis 
(PCA) finds dominant axes of 
variation 

• PC1 explains 78% of variance in 
data

• Index of flood magnitude/ 
duration*
• Also incorporates low flow 

information
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More responsive
drying Index
• RiverEyes data

• Mile-days dry
• 24 miles dry for 10 

days = 240 mile-days 
dry

• Predict mile-days dry 
from summer 
channel acres to fill in 
data gaps 

Note non-
linear axis
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Disaggregating catch data

• Pooled seine hauls by 
sample site

• Demonstrates variance in 
catch rates

• Years with large average 
CPUE are driven by few 
very large catch events

18



Modeling framework

• Predict site-specific presence 
and CPUE of RGSM

• Predict presence, then if 
present, predict CPUE

• Allow populations to respond 
uniquely to hydrologic 
conditions in each reach

• Account for temporal 
autocorrelation

• Account for theoretical carrying 
capacity
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CPUE Model Structure

• Hurdle Model (two-step)
1. Probability of non-zero catch

2. Predicted CPUE given it is greater 
than zero

• Reach specific baseline probability 
of presence, 𝛼𝑟 (logit scale)

• Latent trend (unobserved driver),
𝑤𝑦

𝑙𝑜𝑔𝑖𝑡 𝑝𝑟𝑦 = 𝛼𝑟 + 𝜷𝑝𝝋𝑟𝑦 + 𝑤𝑦

𝛼𝑟~𝑁 𝜇𝛼, 𝜎𝛼
2

𝑤𝑦~𝑁 𝑤𝑦−1, 1

𝐼 𝐶𝑟𝑦 > 0 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝𝑟𝑦
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CPUE Model Structure
• Hurdle Model (two-step)

1. Probability of non-zero catch

2. Predicted CPUE given it is greater 
than zero

• Gompertz relationship
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𝐶𝑟𝑦 = 𝐾𝑟𝑒
−𝛽𝑜𝑒

−𝛽𝑐δ𝑦

𝐾𝑟~𝑁 𝜇𝐾, 𝜎𝐾
2

𝜎𝑟𝑦 = 𝑐𝑣 × 𝐶𝑟𝑦

𝛾𝑟𝑦 = 1 + 𝜃𝑟𝑦𝐶𝑟𝑦

𝜃𝑟𝑦 =
𝐶𝑟𝑦 + 𝐶𝑟𝑦 + 4𝜎𝑟𝑦

2

2𝜎𝑟𝑦
2

𝐶𝑟𝑦|𝐶𝑟𝑦 > 0 ~Γ 𝛾𝑟𝑦 , 𝜃𝑟𝑦



CPUE Model Structure
• Hurdle Model (two-step)

1. Probability of non-zero catch
2. Predicted CPUE given it is greater 

than zero

• Gompertz relationship

• Reach specific “carrying capacity”, 
𝐾𝑟

• Gamma distributed errors
• Continuous, positive values
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CPUE Model Structure

• Hurdle Model (two-step)
1. Probability of non-zero catch

2. Predicted CPUE given it is 
greater than zero
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𝐶𝑟𝑦|𝐶𝑟𝑦 > 0 ~Γ 𝛾𝑟𝑦 , 𝜃𝑟𝑦

𝐸 𝐶𝑖𝑟𝑦 = 𝐼 𝐶𝑟𝑦 > 0 × 𝐶𝑟𝑦|𝐶𝑟𝑦 > 0
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Models explored

• Presence model 
p(metric)

• Catch model
C(metric)

• Metrics
• PC1

• PCA axis 1
• Flood magnitude, 

duration, summer flows

• Flood peak timing
• Mile-days dry
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Presence 

Component

Catch 

Component WAIC ΔWAIC

1 PC1 PC1 6477 0

2 Timing Timing 10493 4016

3 Mile-days dry + PC1 PC1 15601 9124

4 Mile-days dry Timing 15618 9141

5 Mile-days dry PC1 15667 9190



Model comparison

• Model with flood magnitude predicting both presence and catch fits data 
MUCH BETTER than all other models.
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Predicted CPUE

• Distributions of predicted catches 
capture >95% of observations

• Struggles to capture rare high catches

• Higher predicted catches in years with 
large floods

• Higher, more variable catches in San 
Acacia than Isleta or Angostura

𝐸 𝐶𝑟𝑦 = 𝐼 𝐶𝑟𝑦 > 0 × 𝐶𝑟𝑦|𝐶𝑟𝑦 > 0
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Parameter Estimates 
- Presence
• Increased probability of 

capture in years with larger 
floods

• San Acacia has greatest 
baseline probability of 
catching RGSM at any given 
site
• Less flooding required to 

increase probability of capture 
in San Acacia

𝑙𝑜𝑔𝑖𝑡 𝑝𝑟𝑦 =

𝛼𝑟 + 𝜷𝑝𝝋𝑟𝑦 + 𝑤𝑦
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Parameter Estimates –
Presence – Latent Trend

• Periodic pattern in catch 
probability not captured by drying 
conditions

• Accounting for one or more 
unobserved drivers of variation, 
possibly including:
• Prior year’s distribution carrying 

over?
• Large-scale climatic conditions?

• PDO
• ENSO

𝑙𝑜𝑔𝑖𝑡 𝑝𝑟𝑦 = 𝛼𝑟 + 𝜷𝑝𝝋𝑟𝑦 + 𝑤𝑦

𝑤𝑦~𝑁 𝑤𝑦−1, 1
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Predicted probability 
of presence
• Lower in years with small floods

• Periodic pattern – driven by latent 
trend

𝑙𝑜𝑔𝑖𝑡 𝑝𝑟𝑦 = 𝛼𝑟 + 𝜷𝑝𝝋𝑟𝑦 + 𝑤𝑦
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Parameter Estimates 
– Catch
• Larger floods increase the 

mean expected catch at a 
given sampling site

• San Acacia has highest 
predicted carrying capacity
• Large uncertainties

𝐶𝑟𝑦 = 𝐾𝑟𝑒
−𝛽𝑜𝑒

−𝛽𝑐δ𝑦
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Parameter Estimates 
– Catch
• Larger floods increase the 

mean expected catch at a 
given sampling site

• San Acacia has highest 
predicted carrying capacity
• Large uncertainties

• San Acacia has greatest 
expected catch

𝐶𝑟𝑦 = 𝐾𝑟𝑒
−𝛽𝑜𝑒

−𝛽𝑐δ𝑦
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Simulation Experiment

• What is the probability of 
meeting recovery goal CPUE given 
different flood conditions?

• Proportion of simulated CPUEs 
greater than 5 RGSM per 100m2

• Single year!

• Useful tool for exploring alternative 
management options
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Effect of Drying -
Presence
• Model had less support by WAIC 

than PC1 model
• Remember: PC1 incorporates flood and 

low flow information

• Demonstrates strong support for 
negative effect of summer drying on 
RGSM presence
• San Acacia has greatest baseline 

probability of catching RGSM at any 
given site
• Model suggests more drying required to 

reduce catch probability in San Acacia
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𝑙𝑜𝑔𝑖𝑡 𝑝𝑟𝑦 =

𝛼𝑟 + 𝜷𝑝𝝋𝑟𝑦 + 𝑤𝑦

𝛽𝑝



Implications

• Larger floods increase 
productivity of RGSM
• Increases abundance and 

distribution

• Contemporary hydrologic 
backdrop can provide suitable 
conditions periodically
• Frequency needs to be increased 

for recovery
• Habitat restoration?
• Managed flood flows?
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• Summer drying extent appears 
less important as predictor of 
RGSM, but it is related to flooding
• Minimizing drying will be beneficial

• Model provides a tool for 
exploring performance of 
alternative management 
approaches under uncertain 
future hydrologic conditions



Next Steps

• What is driving the latent trend?
• Spawning biomass

• Large-scale climatic indices (PDO, 
ENSO, etc.)

• Management strategy evaluation 
to inform adaptive management

• Explore trade-offs with other water 
management objectives
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Predicted CPUE
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