Soil fungal community functional shifts following anthropogenic disturbances could negatively impact cottonwoods

> Rich Wagner Bosque Ecosystem Monitoring Program

A CONTRACTOR OF A CONTRACTOR O

(Photos courtesy of Rich Wagner unless noted)

How do we bring fungi and our problem together?

Goals:

- 1) To assess how bosque soil fungal community composition and diversity are impacted by new, multi-factor disturbance regimes
- 2) To provide a more holistic tool for cottonwood restoration

Predictions:

1) Less disturbed mature cottonwood habitats would be characterized by lower fungal diversity, a greater abundance of ectomycorrhizal fungi than arbuscular mycorrhizal fungi and fewer pathogenic fungi

2) Access to water would significantly impact community composition

This is the bosque! (the pretty parts, anyway)

Middle Rio Grande; Google Earth

The problem: a disconnected forest

Historic Rio Grande flooding; mrgcd.com

Jetty-jacks

Human impacts and interests force the transition from a dynamic, flooddriven system to a disconnected, highly regulated system.

Cottonwood gallery

Increasing water use, climate change, fires and the spread of exotics put additional stress on a (still beautiful) senescing cottonwood gallery forest.

Fire

Cochiti dam; ejatlas.org

Salt cedar

What is being done about the problem, and who is doing it?

What: Collaborative restoration and ecological monitoring projects

- Pole planting
- Clearing exotics
- Bank lowering and swales
- Restoring river function (flooding)
- Long-term monitoring

Jr. Rangers?

Who:

- Federal, state and local agencies
- NGOs
- Pueblos, communities and educational partners
- BEMP (shameless plug)
- My Kids (not so shameless)

Pole planting

Collecting water chemistry data

Mycorrhizae are a lovely marriage!

Cottonwoods colonized by ecto- (ECM) and arbuscular (AM) mycorrhizal fungi

- AM pretty rare in cottonwoods
- ECM ~70% Basidiomycota and ~30% Ascomycota; AM ~100% Glomeromycota

What do (mycorrhizal) fungi have to do with it?

Roles of mycorrhizal fungi in riparian ecosystems:

- Provide soil structure
- Build organic matter and cycle nutrients
- Aid in plant water and nutrient uptake
- Protect plants
 - Ectomycorrhizal dominance

Bosque fungus

Impacts of disturbance on fungi and restoration:

- Alter diversity and community compositions
- Increase fungal pathogens
- Remove mycorrhizal networks and reduce colonization
- But restoration can cause shifts towards historic structures
- Mycorrhizal inoculation in restoration

Bosque fungus

What do (mycorrhizal) fungi have to do with it?

Some things we know about mycorrhizal fungi and cottonwoods in southwest riparian areas:

- Greater colonization by ECM fungi in older stands
- Greater colonization with regular flooding
- Exotics reduce colonization
- Exotic clearing reduces inoculation potential

Bosque fungus

What we know about mycorrhizal fungi and Rio Grande cottonwoods in the bosque:

- Flooding temporarily increases inoculation potential
- Frequency of flooding may not impact colonization
- Very little data...that's about it

Methods (highly simplified version!)

- Collect **DIRT** from 6 replicates of 5 disturbed **HABITAT TYPES** in BEMP long-term ecological monitoring sites
- Turn **DIRT** into **DNA** using **MOLECULAR WIZARDRY**
- Analyze site specific **DNA SEQUENCE LIBRARIES** using fancy **BIOINFORMATICS** approaches

Soil core (turd)

34 BEMP sites; bemp.org

So what did we find in these different habitat types? A really cool pattern!

Diversity increases along a disturbance gradient

Bosque fungus

Increasing disturbance

Bosque fungus

Community composition by phylum varies along a disturbance gradient

As disturbance increases: Ascomycetes \uparrow and Basidiomycetes \downarrow

Trophic modes vary along a disturbance gradient

Mycorrhizal guilds shift along a disturbance gradient

Common mycorrhizal families vary along a disturbance gradient

As disturbance increases: Ectomycorrhizal Basidiomycetes↓, Disturbance loving Ascomycetes↑ and Arbuscular mycorrhizal Glomeromycetes↑

Differential abundance of taxa driven by disturbance regime

As difference in disturbance severity \uparrow the number of species driving differences \uparrow

Habitat types cluster by disturbance regime

Pairings	Mature,	Mature,	Mature,	Mature,	Cleared,	Cleared,	Cleared,	Fire,	Fire,	Exotics,	More,
	Fire	Cleared	Exotics	Young	Fire	Exotics	Young	Exotics	Youna	Young	Less
Р	0.0002	0.0085	0.0348	0.0568	0.5458	0.3721	0.1578	0.0448	0.0438	0.7891	0.0001

Environmental factors influence similarities

Variable	рН	Organic Groundwater		Groundwater	Flood	Plant cover	Cottonwood	
		matter		variability	Frequency		cover	
P (DISTLM)	0.005	0.071	0.057	0.0014	0.086	0.0006	0.02	

Reynolds forest BEMP station; Pre-Big hole fire

Why do we actually care?

- Future of the bosque
- Restoration goals
- Plants need fungi
- Fire and clearing
- Mature, young and historic structure

Owl tree; Whitfield Wildlife Conservation Area; Post-Big hole fire

A new tool for restoration

- **Support** restoration by identifying areas with fungal communities best suited to support native riparian plants
 - Ectomycorrhizal dominance
- **Identify** whole soils for inoculation of pole plantings
- **Monitor** long-term fungal community shifts
 - Project success/Santa Ana
 - Identify cryptic disturbance

BEMP BioPark site; Dr. Ara Winter

Future directions

- Identify root-associated ectomycorrhizal fungi and their abundances
- **Sample** fungal community biomass for a more accurate measure of abundance
- **Explore** roles of important indicator species
- Assess impact of crucial water metrics on community and indicator species
- **Expand** study scope (fancy way of saying we need more data)
 - Willow swales/ SWFL
 - Islands and bars
 - Baseline community

Yesterday

The future?

Questions?

"Yes, there are two paths you can go by, but in the long run, there's still time to change the road you're on."-Led Zeppelin