

Genetic Monitoring of Rio Grande Silvery

Minnow Megan Osborne, guilherme caeirodias & thomas turner

Map credit: T. Archdeacon

Rio Grande Silvery Minnow Hybognathus amarus

- Distribution: Rio Grande and Pecos River
- Small-bodied, short-lived cyprinid
- Pelagic broadcast spawner
- Spawning associated with increases in flows/temperature in the spring

Genetic Diversity

- Populations with higher genetic diversity and larger effective population sizes have greater evolutionary/adaptive capacity to respond to ecological stressors.
- Amount of standing genetic diversity determined by the demography/history, effective population size (N_e), aspects of life-history & selection.
- Provides a way to assess genetic health of the population.

What is *Genetic Monitoring*?

- Tracking genetic diversity over contemporary time scales
- Multiple time points
- Consistent methodology across time series
- Rio Grande Silvery Minnow: 1999-2022

Why conduct genetic monitoring?

- Environmental conditions are highly variable- Dramatic population fluctuations from year to year
- Short-lived species
- Captive breeding/rearing and augmentation (2003-2022)
- Genetic diversity affected over contemporary time scales
- Can be paired with demographic data

* Yackulic et al. 2022. Quantifying flow and nonflow management impacts on an endangered fish by integrating data, research, and expert opinion. *Ecosphere*, 13(9).

Microsatellites

- •DNA nucleotide repeats (AGAGAG)
- Non-coding sequences, frequent
- Assay variation at 10's of loci
- •Highly polymorphic (i.e., lots of alleles)
- Ascertainment bias/scoring errors
- •RGSM-- 9 microsatellites (9-60 alleles/locus)

•1987, 1999-2022

Single Nucleotide Polymorphisms

- •Substitutions of single nucleotide (ACGT)
- •Microhaplotypes- multiple SNPs at a locus
- •Found in coding and non-coding sequences
- •Very frequent in the genome
- •Can assay variation at 100-1000's of loci
- Reflect genome-wide variation
- •RGSM– 5,549 SNPs from 3,151 loci (2-10 alleles/loci)

Definitions

Heterozygous- The presence of different alleles at one or more loci on homologous chromosomes (Aa).

Heterozygosity (H_e) – Proportion of heterozygous individuals for a locus in a population.

Homozygous- The presence of the same alleles at one or more loci on homologous chromosomes (AA).

Genetic effective size (N_e) – The effective size of a breeding population under idealized conditions, meeting the assumptions of Hardy-Weinberg (i.e., equal sex ratio, random mating).

Genetic drift – is the random change in allele frequencies from generation to generation because of sampling error.

The finite number of genes passed on to progeny will be an imperfect sample of the parental allele frequencies.

The effects of genetic drift are (i) allele frequencies will change and (ii) genetic variation will be lost. The smaller the population, the greater the change in allele frequencies due to drift.

What are we measuring?

Microsats/SNPs	MtDNA	Bottleneck Effect		
Gene diversity/ Heterozygosity H _{EC} /H _{oC}	Haplotype diversity	 Rate of loss– determined by N_e Rare alleles contribute little to heterozygosity so loss of alleles may not be accompanied by loss of heterozygosity 		
Allelic richness A _R	Haplotype richness	 Sensitive metric (microsatellites) Depends on number of alleles & frequencies Rare alleles more likely to be lost 		
F _{ST} / DAPC		 Temporal divergence of allele frequencies. F_{ST} ranges 0 (no difference) to 1 (complete divergence) 		
IBD F		 Relatedness metric, higher values indicate more related individuals 		
g2		 Population parameter that summarizes the variance in inbreeding in the population Dependent on demographic history (bottlenecks admixture) – higher values when there is inbreeding 		

Genetic Effective Population Size

- The number of putative parents and the mean and variance in the number of offspring
- Tracked in genetic monitoring because N_e can be a sensitive indicator of population decline and provides information about loss of adaptive potential and population viability
- Effective population size is LESS than CENSUS SIZE

	VARIANCE EFFECTIVE SIZE, N _{eV}	INBREEDING EFFECTIVE SIZE, N _{eD}
How it is measured	Allele frequency changes	Linkage disequilibrium (non- random association of alleles at different loci)
What it measures	Loss of genetic variation from GENETIC DRIFT	Number of parents for the sampled generation
# of temporal samples	2	1
Stable populations	=	=
Population fluctuation Supplementation	≠	≠

Genetic Sampling

- Unmarked fish sampled from three localities within each river reach
 - Angostura
 - Isleta
 - San Acacia
- Non-destructive sampling
- N = 7,034 unmarked fish from the MRG
- N = 5,291 captive bred/reared individuals released to the MRG
- Annual samples from refugial broodstocks

SNP development samples in parentheses

Year	Angostura	Isleta	San Acacia	Total
1987	15	-	28	43
1999	-	-	46 (30)	46
2000	-	-	194 (42)	194
2001	-	65	63	128
2002	67 (10)	121 (10)	201 (10)	389
2003	71	65	33	169
2004	141 (1)	15 (10)	6 (15)	162
2005	190	109	95	394
2006	95 (10)	143 (10)	145 (10)	383
2007	48	128	42	218
2008	165(10)	191 (10)	123 (10)	479
2009	175 (10)	153	150 (20)	478
2010	149 (9)	146 (10)	151 (9)	446
2011	71	148	140	359
2012	147 (10)	215 (11)	154 (9)	516
2015	75 (11)	33 (11)	35 (9)	143
2016	171	121	128	420
2017	159 (10)	156 (10)	154 (10)	469
2018	152 (10)	148 (10)	143 (21)	443
2019	73	10	54	137
2020	148	127	151	426
2021	118	60	61	239
2022	159	51	131	339

1 0.24 • 4.20 2.25 Year

Genetic Diversity

- Microhaplotypes- improved sensitivity compared to microsatellites
- Gene diversity (*u*H_s)– little change across the time series
- Decreases in H_o detected by microhaplotypes
- Decline in A_R 2015-2018 detected by microsatellites

Genetic Diversity

- Augmentation
 stabilized genetic
 diversity (uH_s, H_o, A_R)
- Decreases in H_o detected by microhaplotypes
- Decline in A_R 2015-2018 detected by microsatellites

Microhaplotype-based inbreeding metrics

- Mean individual inbreeding coefficient per population (F_{POP}). Significant increase between 2006-2008.
- g_2 increases from 2015.
- Higher variance in inbreeding.

• F_{IS}: Measures heterozygote deficiency/excess per locus. 2009-2017- deficiency of heterozygotes

Osborne, Caeiro-Dias and Turner (In Press). Transitioning from microsatellites to SNP-based microhaplotypes in genetic monitoring programs: lessons from a 20-year time series of paired data. Molecular Ecology.

Microsatellite-based inbreeding statistics

- Increase in F_{IS}- in 2021-2022
- Deficiency in heterozygotes in the population

- Microsatellites- less sensitive to changes in g₂ because fewer loci are assayed
- 2021- *g*₂ increases.
- Increases in g₂ associated with year following bottleneck (small wild population, more fish released from hatchery)

Pairwise Comparison

Microhaplotypes/microsatellites record shifts in allele frequencies associated with population bottlenecks.

Osborne, Caeiro-Dias and Turner (In Press). Transitioning from microsatellites to SNP-based microhaplotypes in genetic monitoring programs: lessons from a 20-year time series of paired data. Molecular Ecology.

Microhaplotypes/microsatellites record shifts in allele frequencies associated with population bottlenecks.

Gene flow from hatchery to wild

→ N_a/N_T

Migration/gene flow from hatchery to wild

Genetic estimates of gene-flow (m) are positively associated with fraction of the population comprised of augmented individuals

- What it measures: change in allele frequencies between temporal samples.
- Dashed lines N_e= 50/500
 - N_{ev}<500 long-term risk (loss of genetic variation from genetic drift)
- Small N_e more rapid loss of diversity
- Augmentation with hatchery fish act as additional source of genetic drift– lowering N_e

N_{eW} /N_{eT} are decoupled from demographic abundance estimates. Increases in abundance are not accompanied by increases in N_{e.}

When population is largely derived from more limited pool of captive breeders N_{eT} is reduced– increased genetic drift

Linkage Disequilibrium Effective Size

What it measures: Number of parents for the current generation

•Dashed lines N_e= 50/500

• N_{el}<50 imminent risk

Number of temporal samples: 1

Both SNPs and microsatellites detect declines

 $\rm N_{eD}$ estimates are always higher than $\rm N_{eV}$

Positive association between N_{eD} and estimated abundance (wild-only [N_w] and wild+augmented [N_T]).

Negative relationship between the ratio of augmented to wild individuals in the population.

When population is largely derived from more limited pool of captive breeders N_{eD} is less

- Genetic diversity– maintained despite repeated population declines but possible declines in A_R and H_O , increases in inbreeding metrics (F_{IS} , g_2)
- Shift in allelic composition of the population when comparing pre-bottleneck and post-bottleneck populations
- Effective population size (N_{eD})– positively associated with abundance
- Genetic estimates of gene flow are positively associated with the fraction of the population derived from the hatchery
- When riverine population is dominated by augmented fish- N_e is reduced.

Acknowledgements

- Funding: US Bureau of Reclamation
- UNM students: D. Aló, M. Benavides, C. Cooper, M. Foster, M. Martinez, T. Max, T. Diver, A. Sharp, S. Netz, J. Trujillo, I. Cunning, T. Le, S. Sanchez, M. Sandoval, H. Conover, J. Perez-Baca, B. Davis, A. Sanchez, H. Martinez, M. Coleman, B. Fitzgerald, C. Bell, S. McKitrick, M. Paulk, L. Liang, C. McGuan, T. Pilger, A. Cameron, D. Camak
- UNM Molecular Biology Facility
- Museum of Southwestern Biology– E. DeArmon, A. Snyder
- T. Archdeacon, M. Ulibarri, W. Wilson, W. Knight (USFWS), C. Yackulic (USGS), S. Platania, R. Dudley, M. Farrington (ASIR), K. Lang, K. Ward (Albuquerque BioPark), A. Hudson, P. Dodge (LLSMR)
- Thomas Kennedy- RGSM photo