Middle Rio Grande Endangered Species Collaborative Program's

2020 Science Symposium

Science & Adaptive Management Tools: Conceptual Ecological Models

Catherine E. Murphy Senior Science Coordinator Program Support Team / WEST, Inc.

Conceptual Ecological Models – Why?

The Collaborative Program has four primary goals for using CEMs to inform adaptive management:

- 1. Identify critical scientific uncertainties
- 2. Make decisions with transparency

- 3. Communicate effectively among scientists, managers and public
- 4. Connect management actions, system responses and guiding

principles

Photo: Albuquerque Journal

Photo: National Geographic

Conceptual Ecological Models – What?

<u>**Drivers</u>** are events, conditions and processes that contribute to the success of a species, assemblage or ecosystem (indicator <u>response</u>).</u>

<u>Stressors</u> are events, conditions and processes that contribute to failure of the biotic indicator by constraining growth, reproduction or survival.

Conceptual Ecological Models – How?

Non-quantitative planning tools used to identify major drivers and stressors on natural systems, ecological responses to stressors, and the best biological attributes or indicators of these responses.

CEMs – Tools of Adaptive Management

CEMs – Tools of Adaptive Management

MRGESCP Species-level CEMs

- CEMs for SWFL and YBCU were developed in tandem around the species' life cycles, as both are neo-tropical migratory songbirds
- Much uncertainty exists in both the SWFL's and the YBCU's basic life history
- These knowledge gaps must be addressed before detailed relationships among variables can be represented, as shown in the RGSM CEM

Rio Grande Silvery Minnow CEM

Adult Transition Probability Adult Age 2+ Neutral Low Flow Habitat Availability Channel Drying Hydrology Favorable Geomorphic High Water Processes Temperatures Poor Water Quality Food Food Availability Predation Predation by Fish and Avian Communities Disease/ Parasites Disease/Parasites Understanding of Importance to Management Legend Transition Probability Relationship Implications High Medium Low

Fish Responses: Post-spawn Survival, Adult Survival

Rio Grande Silvery Minnow CEM

			Child Node (Destination of an													arrow/influence)																												
		RGSM Life History											-	-	Foo	d Ava	ail.	Pre	Predation				Hydrology					Habitat				Geomorphology												
		Adultst	Eggs	Larvae	Juveniles	Adults:+1	Upstream Egg Entrainment	Outmigrant Eggs	Upstream Larvae Entrainmen	Outmigrant Larvae	Fecundity	P(Egg Surv.)	P(Larvae Surv.)	P(Juvenile Surv.)	P(Adult Surv.)	Hatch. Aduits	Level of Genetic Diversity	Disease/Parasites	La rv. Food Availability	Juv. Food Availa bility	Adult Food Availa bility	Fish Predation	Avia n Predation	Invert. Predation	Vegetation	۵	H ₂ 0 Temp	H ₂ 0 Quality	Floodplain Inundation	P{Displacement}	P(Stranding)	P(Chanel Drying)	Avail. La rv. Ha bitat	Avail. Juv. Habitat	Avail. Adult Habitat	¢s	Sediment Source	Sediment Transport Capacity	Base Level Control	Deposition/Scouring	Floodplain Confinement	River Geometry	River Hydraulics	Photoper io d
Parent Node (Origin of arrow/influence)	Adults: Eggs Larvae Juveniles Adults: Upstream Egg Entrainment Outmigrant Eggs Upstream Larvae Entrainment Outmigrant Larvae Fecundity P(Egg Surv.) P(Larvae Surv.) P(Juvenile Surv.) P(Adult Surv.) Hatch. Adults Level of Genetic Diversity Disease/Parasites Larv. Food Availability Juv. Food Availability Juv. Food Availability Adult Food Availability Fish Predation Avian Predation Invert. Predation					X			X		H L L L																																	
	Vegetation Q H ₂ O Temp H ₂ O Quality Floodplain Inundation P(Displacement) P(Stranding) P(Chanel Drying) Avail. Larv. Habitat Avail. Juv. Habitat Avail. Adult Habitat Qs							M		M	H H M 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4								M	M						×	H ×	L ×	H	L 2010	L X	M X	M M	M M M X	M M X	H I I I I I I I I I I I I I I I I I I I	H	H	H	H	H	M M	H [
	Sediment Transport Capacity Base Level Control Deposition/Scouring Floodplain Confinement River Geometry River Hydraulics Photoperiod										M								M	M	M				M								M	M	M	M	M	M	×	ж М	×	M M M	X	×

RASU Adult

Conceptual Ecological Models – Next Steps

- Characterizing uncertainties Reducible? Descriptive v. testable? **M**agnitude Relevance Incorporating into AM Database **Tabular formatting**
 - Linking to hypotheses

Prioritizing uncertainties Using guiding principles for hierarchical approach Mission \rightarrow Goals \rightarrow Objectives \rightarrow Strategies... Objectives Workshop S.M.A.R.T. objectives Short and long-term planning **CEMs** can always improve

