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A B S T R A C T

Extreme weather events have been affecting local environmental sustainability. Previous literature in this field
evaluates environmental sustainability based mainly on past and current resource consumption and availability,
however, knowledge about the status and potential changes of environmental sustainability under future climate
extremes is missing. This paper proposes an integrated approach (combining the Ecological Footprint Analysis
with econometric regressions) to predict future environmental sustainability under different climate scenarios.
Based on the case study of the U.S. Rio Grande Basin, the results show that this region has been sustainable in
1982–2012, although sustainability levels have been declining over time. In addition, projections for the future
show that the entire region will most likely move away from sustainability by the end of this century under the
high emission scenario (e.g., RCP8.5). These findings are relevant for sustainable resource management and
allocation of local environmental resources as well as for decision-making support regarding climate risk
adaptation and mitigation strategies.

1. Introduction

Although there are many definitions of environmental sustainability
in the literature (Chambers et al., 2014; Goodland, 1995; Moldan et al.,
2012), the mainstream defines it as the maintenance of natural capital
in a balanced condition. In other words, a system allows the society to
satisfy its needs over generations without exceeding the capacity of its
ecosystems to continue to regenerate its provisioning, supporting, reg-
ulatory, and cultural services (Goodland, 1995). Previous literature has
proposed different methods to construct indicators to measure en-
vironmental sustainability using both quantitative and qualitative
techniques (Cano-Orellana and Delgado-Cabeza, 2015; Heberling and
Hopton, 2014; Moldan et al., 2012; Neumayer, 2012). However, ex-
isting sustainability indicators mainly focus on the current sustain-
ability status, using trends or reference values generated under histor-
ical conditions, and do not consider potential future changes in
environmental sustainability subject to climate variability (Milman and
Short, 2008). Thus, knowledge of possible patterns of environmental
sustainability under future climate extremes is missing. In this paper,
we propose an integrated approach to fill the identified research gap in
this field. This approach combines the Ecological Footprint Analysis
with econometric regressions to predict the conditions of

environmental sustainability under future climate variability. While
this approach could be applied to different regions and countries, in this
paper, we use data from the U.S. Rio Grande Basin as one of the ap-
plications.

Many studies have shown that weather variability and climate
change can potentially affect the availability of environmental re-
sources, possibly in a negative way, resulting in the status change of
environmental sustainability (Field, 2012; IPCC, 2014). For example,
some species are threatened with extinction under global warming
(Thomas et al., 2004; Urban, 2015); forest area in the tropics has been
declining due to the stress from climate change (Geist and Lambin,
2002; Malhi et al., 2008); and water resources stresses have also been
increasing because of reduced water availability (Arnell, 2004;
Vörösmarty et al., 2000). Many of these changes could have continuous
impacts on resource supply, including land use, food and timber pro-
duction, biodiversity, and consequently on human health and well-
being (Metzger et al., 2006). On the other hand, population growth and
increasing demand for food, energy, and water resources could result in
rising atmospheric carbon dioxide levels in the mid and long term
(Galloway, 2001; Metzger et al., 2006). Over time, it is difficult to keep
the balance of environmental demand and supply when climate change
is taken into account. Moreover, some studies found that the frequency
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and intensity of extreme weather events are likely to increase under
future climate change (Huber and Gulledge, 2011), which could further
affect the demand and supply of environmental resources and conse-
quently environmental sustainability.

Due to continuous changes in resource demand and supply as well
as weather variability, it is important to understand the past, current
and potential future conditions and changes of environmental sustain-
ability. This knowledge could help organizations, enterprises, and
policy makers track progress towards sustainable development and set
policies supporting this progress (Milman and Short, 2008). The in-
tegrated approach presented in this paper addresses current decision-
making and policy needs in this area and can be used to project changes
in future sustainability due to climate variability. To the best of our
knowledge, this is the first study to improve understanding of this topic
in this discipline and to contribute to scientific and policy discussions
on environmental sustainability and sustainable development.

2. Methods

To achieve the research goal as specified above, the following steps
were conducted:

1) Application of the Ecological Footprint Analysis (EFA) to determine
the status and changes of environmental sustainability under his-
torical conditions from 1982 to 2012.

2) Development of econometric regression models to investigate po-
tential impacts of climate conditions on the determined demand and
supply of environmental resources.

3) Projections of future environmental sustainability conditions and
changes based on the estimated parameters of the econometric re-
gressions as well as climate projections from 20 global climate
models for two emission scenarios.

2.1. Calculation of environmental sustainability indicators

In order to determine indicators of environmental sustainability, the
EFA method was applied in this study, which was first introduced by
Rees and Wackernagel (1996) and expanded by Chambers et al. (2014).
EFA has been applied in numerous studies for different geographic re-
gions and spatial scales, from global to municipal and from industry
level to household level (Bagliani et al., 2008; Chambers et al., 2014;
Collins et al., 2006; Erb, 2004; Graymore et al., 2008; Lammers et al.,
2008; Medved, 2006; Niccolucci et al., 2008; Wackernagel et al., 2004).
The application of EFA in this study is highly viable, as it has proven to
be especially useful when total national production, import and export
data for key sectors are readily available and easier to locate than
specific local data, particularly for developed countries (Moore et al.,
2013).

EFA measures both the demand (i.e., ecological footprint) and supply
(i.e., environmental biocapacity) of environmental resources in the ana-
lyzed region. In the analysis, the demand for environmental resources is
expressed with direct and indirect consumption levels of the respective
resources, while the supply of environmental resources is the mea-
surement of resource availability.

To calculate the ecological footprint (demand for natural resources)
in an exemplary (case study) region, the area of the ecologically pro-
ductive land was divided into six categories according to their uses,
including built land (developed land plus other rural land), forest land,
arable land (cropland plus land enrolled in conservation programs),
pasture land, surface water areas1 and energy land. Given the

population growth and increasing resource demands in the case study
region over time, the ecological footprint indicator was calculated for
each year according to Eq. (1):

∑= × = ×EF N ef N γ c p( / )i i i (1)

where i is the type of the resources; pi is the average productivity of
producing ith type of a resource; ci is the per capita quantity of the ith

resource consumed; γi is the equivalence factor describing productivity
of different land types in reference to the reported yields of various
plant and animal produce; N stands for the total population in the
analyzed area; ef describes per capita ecological footprint; and EF is the
total ecological footprint.

Environmental biocapacity (supply or availability of natural re-
sources) was calculated with Eq. (2):

∑= × = × − ×BC N bc N γ y a(1 12%) i i i (2)

where ai is the per capita area of the productive land of the ith type of a
resource; yi is the yield factor, which usually stands for the supply-ex-
isting national biocapacity (per capita); bc and BC present the per ca-
pita and the total ecological biocapacity, respectively. The 12% value in
the equation is a correction factor, indicating that 12% of the land area
deducted from the ecological supply should be preserved for biodi-
versity protection. This factor is based on an assumption defined by
WCED (1987) and has been consistently applied in the EFA metho-
dology across different studies. Other variables in Eq. (2) are defined
the same way as in Eq. (1).

To calculate the demand and supply indicator of environmental
resources, we use values of the equivalent factor (γi) and the yield factor
(yi) from Chambers et al. (2014), as follows: 2.83 and 1.22 for arable
and built land, 0.44 and 1.63 for pastureland, 1.17 and 2.11 for for-
estland, 0.06 and 1 for surface water areas, and 1.17 and 0 for energy
land, respectively. To ensure validity of the results, sensitivity analysis
was conducted with different values for each land type. Findings of
those analyses showed that trends of the per capita environmental
biocapacity and ecological footprint are consistent, although magni-
tudes vary across different values of these two parameters. Despite the
variations in magnitude, the factor values from Chambers et al. (2014)
were used for this analysis as they have been widely acknowledged in
the literature and applied in many relevant studies in this field (Hopton
and Berland, 2015; Hopton and White, 2012; Moore et al., 2013).

Based on Eqs. (1) and (2), environmental sustainability has been
calculated as a difference between ef and bc. The value of this indicator
denotes if the selected area experienced an ecological deficit (i.e.,

− >ef bc 0, corresponding to positive values) or an ecological reserve
(i.e., − <ef bc 0, corresponding to negative values). Accordingly, re-
source use in the selected area would be called sustainable if − <ef bc 0,
while it would be moving away from sustainability or be called un-
sustainable if − >ef bc 0. By comparing the combined footprint in the
selected area with the ecological productive land available in the region
over time, EFA will detect if the growing population in the selected area
overuses resources, thus exceeding its ecological carrying capacity
(Graymore et al., 2008).

2.2. Estimating impacts of climate variability on current environmental
sustainability

Using the calculated ecological footprint and per capita environ-
mental biocapacity from Eqs. (1) and (2), we then develop an econo-
metric regression model to examine impacts of climate conditions on
the supply and demand of environmental resources. The model was
defined with the following equation (Eq. (3)) for each county c in year t :

∑= + + +
=

y C α W θT uct c
k

k kct ct ct
1 (3)

where yct is either the ecological footprint (ef ) or per capita

1 According to the National Resource Inventory (https://www.nrcs.usda.gov/
wps/portal/nrcs/detail/national/soils/?cid=nrcs143_013913), water area is
defined as “a broad land cover/use category comprising water bodies and
streams that are permanent open water”.
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environmental biocapacity (bc), which was calculated with Eqs. (1) or
(2). Wkct is a vector of climate factors including the mean temperature,
annual precipitation, and variables expressing extreme weather events
(such as the drought index, precipitation intensity index, the variation
of the mean temperature, cold growing season degree-days with tem-
perature less than 8 °C, and hot growing season degree days with
temperature higher than 32 °C). Tct is the time trend to control for
possible technology improvements. Cc is the county fixed effects to
control for county characteristics that are unobservable and do not vary
across time. uct is the error term, while α and θ are parameters to be
estimated.

Panel regression with fixed effects was used to estimate Eq. (3).2

Serial correlation and/or heteroskedasticity were accounted for by
clustering the standard errors at the county level.

2.3. Projections of environmental sustainability under future climate
variability

The parameters estimated with Eq. (3) were further used to predict
future demand and supply of environmental resources under different
climate scenarios. For a given climate model or emission scenario, the
impact for county c is given by:

∑=
=

⌢
M α WΔc

k
k kc

1 (4)

where WΔ kc is the predicted changes in weather variable k from the
base period in county c. These changes are specific to a climate model,
emission scenario and time scale.

⌢
αk are estimated parameters for the

weather variable k from Eq. (3). Mc is defined as the impacts from
climate change in county c.

When projecting future impacts of climate variability on environ-
mental sustainability, all other non-climate variables were controlled at
the historical mean in order to capture effects from all climate vari-
ables. Moreover, climate projections from 20 global climate models for
two emission scenarios were used in order to capture climate un-
certainties (Burke et al., 2015; Flato et al., 2013). Thus, changes of
future environmental sustainability could be pinpointed as the average
effects of climate change under uncertainty.

3. Study area

To prove the practical applicability of the integrated approach, we
use data from the U.S. Rio Grande Basin. The Rio Grande Basin is lo-
cated in the southwestern United States, and spans over 870,000 km2

across three U.S. states (Colorado, New Mexico and Texas) and Mexico
(Fig. 1 shows the U.S. part of the Rio Grande Basin). The Rio Grande
Basin is an appropriate case for analyzing environmental sustainability
changes over time due to the variability of ecosystem services in this
basin as well as the multitude and intensity of interactions between the
ecological and human dimensions, which create many natural resource
and sustainability issues (Graymore et al., 2008).

The Rio Grande Basin has been facing many economic, environ-
mental, and social challenges that determine the sustainable use of
resources in the region, including water resources. For example,
Colorado, New Mexico, and Texas experienced growing population that
almost doubled from 19.7 million in 1982 to 33.3 million in 2012,
which directly raised demand for environmental resources. Moreover,
the region has recorded a significant economic growth over time.
According to the U.S. Bureau of Economic Analysis (BEA), the per ca-
pita real Gross Domestic Product (GDP) in 1997 in Colorado, New
Mexico, and Texas amounted to $43,558, $36,297, and $41,366 (in
2009 dollars), respectively. In 2012, the per capita real GDP increased

by 14%, 10%, and 22%, respectively. The economic development and
population growth led to increasing withdrawals of groundwater and
surface water across Colorado, New Mexico, and Texas from 19 billion
gallons per day in 1985 to 39 billion gallons per day in 2010 (USGS,
2017). With reduced streamflow and recharge, water availability (and
supply to the respective users for different purposes) in the Rio Grande
Basin became an urgent issue affecting not only human well-being but
also the provision of ecosystem services.

Future climate in this region is projected to be warming, while
precipitation has been decreasing (Fig. 1), which could affect the
availability of natural resources (especially water resources) and eco-
system services. For example, the projected increase in temperatures
and changes in precipitation are anticipated to reduce spring and early
summer stream flows, thus reducing water availability for irrigation
and other economic uses. Warmer conditions will also increase eva-
poration and decrease stream flow, which could eventually reduce
natural groundwater recharge. Those conditions are projected to ele-
vate stress on animal and fish species (e.g., silvery minnow), change a
constellation of river ecosystems and foster invasive species (Arnell,
2004; Thomas et al., 2004; Urban, 2015; Vörösmarty et al., 2000).

The unbalanced supply and demand relations of environmental re-
sources in the basin generate a research need to investigate the past,
current, and future conditions and changes of environmental sustain-
ability. Understanding those changes and variations will provide valu-
able information to identify adaptation and mitigation strategies to
potential climate risks and to design programs to maintain environ-
mental sustainability in the short and long term.

4. Data and sources

4.1. Data for ecological footprint analysis

The following data from counties in the Rio Grande Basin were
collected: (1) population, (2) the amount of food and energy consumed
per capita, (3) the amount of biologically productive land types, and (4)
the average productivity of each biologically productive land type in
the region. The period of the analysis spanned the years from 1982 to
2012. In a case of missing county-level data, state-level or national-level
data were used based on the assumption of homogenous patterns across
the state or nation. This procedure was also found in other studies
(Hopton and White, 2012). In addition, for variables with missing va-
lues in some years (e.g., land use data are available only every five
years), values for the missing annual data points were linearly inter-
polated based on the long term trend of the available data, following
the approach by Heberling and Hopton (2014).

Data of county-level population were extracted from BEA.3 Data of
land acres for built land, forest land, arable land, pasture land, and
surface water areas were collected from the 2012 National Resource
Inventory.4 Energy land was calculated based on the forest land ac-
cording to the approach in Chambers et al. (2014), which presumes that
the energy land is the area of the forest land used to sequestrate CO2

originating from energy consumption (Hopton and White, 2012). Spe-
cifically, the parameter of 0.62 was applied based on the translation
rate between the capability of forests to sequester greenhouse gas
emission and the total amount of emissions from energy consumption.

Average land productivity was calculated using data from multiple
sources. County-level crop yield data for main field crops produced in
the Rio Grande Basin (wheat, barley, corn, hay, soybeans, sorghum,
oats, and sugarcane) were collected from the U.S. Department of
Agriculture (USDA)’s National Agricultural Statistics Services (NASS).5

National per acre production of livestock and fish were used for this

2 The reason for using fixed effects in this analysis is the need to control for
some unobservables that are not included in Eq. (3) due to data paucity.

3 The county-level population data can be found here: https://www.bea.gov.
4 These data were collected through a direct request.
5 https://www.ers.usda.gov/data-products.
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analysis as approximation values of county-level production per acre
because regional (i.e., state-wide) crop production data are not avail-
able. The statistics were obtained from the USDA’s Economic Research
Service (ERS), with livestock production including the production totals
of red meat, poultry, and dairy products. The total production levels of
crops, livestock and fish were used to calculate the average productivity
for pastureland, arable land, and surface water areas.

The average productivity and per capita consumption of timber
products and energy were calculated using data of the available na-
tional forest land and state energy land, respectively. National timber
production and consumption data were drawn from Howard and Jones
(2016), while state energy production and consumption data were de-
rived from the State Energy Data System maintained by the U.S. Energy
Information Administration.

Per capita food consumption data were also collected from USDA’s
ERS at the national level due to missing statistical data at the county
level. Food consumption data include fish, dairy, fruits and vegetables,
grain and meat products, which, for the purpose of this analysis, were
aggregated into three categories of livestock, crop, and fish consump-
tion.

4.2. Historical climate data and future projections

Historical climate data and future climate projections were derived
from the climate data hub at the University of Idaho.6 For the analysis
presented in this paper, the following climate variables were selected:
mean temperature (°C), total precipitation measured in 100mm, cold
and hot growing season degree-days, precipitation intensity, drought
index, and standard deviation of the mean temperature. To determine
the best set of variables for the model analysis of Eq. (3), the Least
Absolute Shrinkage and Selection Operator (LASSO) regression analysis
was conducted in order to enhance the prediction accuracy and inter-
pretability of the final regression model. The LARS module in STATA
14.0 was used to perform this analysis.

Among the selected variables, precipitation intensity was calculated

as a fraction of annual cumulative precipitation that occurred from
daily precipitation exceeding the 95th percentile of the climatological
distribution for wet days (Tebaldi et al., 2006). Cold and hot growing
season degree-days were calculated using thresholds of 8 °C and 32 °C
for each day and summing them over the calendar year from January to
December, respectively. In addition, we constructed a binary measure
of the drought index when the average Palmer Drought Severity Index
(PDSI) in a growing season was less than −2. Table 1 shows the sum-
mary statistics of the climate variables used in this paper.

Historical weather observations were obtained from Abatzoglou
(2013), by aggregating gridded ∼4-km spatial resolution surface me-
teorological datasets to the county level. For future weather projections,
we used statistically downscaled climate model simulations for 20
global climate models from the Coupled Model Intercomparison Project
Phase 5 (CMIP5). These climate models were also used in the 2012
Intergovernmental Panel on Climate Change (IPCC) report. Daily sur-
face meteorological data were statistically downscaled to 4-km resolu-
tion using the observed surface meteorological dataset from Abatzoglou
(2013) and used the Multivariate Adaptive Constructed Analogs
method (Abatzoglou and Brown, 2012). Downscaling of climate pro-
jections was conducted for both historical (1950–2005) and future
(2006–2099) model experiments, considering two Representative
Concentration Pathways (RCPs), RCP4.5 and RCP8.5, which represent
medium and high atmospheric greenhouse gas emission levels. Ac-
cording to the IPCC Fifth Assessment Report (AR5 WG1), relative to
temperature levels in the late 20th to early 21st centuries (1986–2005
average), global warming projections from RCP4.5 and RCP8.5 show an
increase in temperature by around 1.8 °C and 3.7 °C, respectively, by
the late 21st century (2081–2100 average).

Using the RCP8.5 emission scenario in the Rio Grande Basin as an
example, Fig. 1 shows changes in the mean temperature and total
precipitation compared to the baseline scenario (1976–2005 average).
For the late-period (2070–2099 average), the scenario predicts in-
creased mean temperature across the entire region and reduced pre-
cipitation in most of the Rio Grande Basin counties. This suggest that
this region will become warmer and dryer by the late 21st century
under future climate projections for the high emission scenario.

Fig. 1. Changes in mean temperature and total precipitation in the late period (2070–2099 average) from the baseline (1976–2005 average) in the high emission
scenario (RCP8.5) in the Rio Grande Basin (Note: All values are aggregated across 20 global climate models).

6 https://climate.northwestknowledge.net/.
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5. Results and discussions

5.1. Current environmental sustainability in the Rio Grande Basin

Trends of the calculated per capita environmental biocapacity,
ecological footprint, and the sustainability indicator (measured in
hectares/capita) for the entire Rio Grande Basin are shown in Fig. 2.
These regional environmental indicators were calculated based on in-
dicators in each county and further aggregated using each county’s total
land area as the weight. Results of the ecological footprint analysis
revealed two main outcomes. First, per capita biocapacity (supply, i.e.
availability of natural resources) has been declining over the analyzed
period from 24 ha/capita in 1982 to 14 ha/capita in 2012. A possible
reason for this trend is the rapid population growth and increased de-
mand for resources due to economic development. Second, the values of
the per capita ecological footprint indicator remained relatively steady
over time, with a slight increase from 0.2 ha/capita in 1982 to 0.4 ha/
capita in 2012. This trend can possibly be explained by the calculation
of this indicator as a ratio of average per capita productivity and con-
sumption, while its relative change over time was determined by
changes in both the denominator and numerator. In the developed
countries, the average per capita productivity for each land type has
generally been increasing due to technological progress (Heinemann
et al., 2014). Meanwhile, the average per capita consumption is affected
by income and higher per capita consumption with rising income
(Storey and Anderson, 2014).

Based on those outcomes, the environmental sustainability indicator

was calculated as the difference between ecological footprint and en-
vironmental biocapacity ( −ef bc), with negative values denoting sus-
tainability in the region and positive values indicating unsustainable
conditions. Accordingly, results show that the Rio Grande Basin has
been generally sustainable in the analyzed time frame as the per capita
ecological footprint (demand for natural resources) is lower than the
biocapacity (supply/availability of natural resources) (i.e., − <ef bc 0).
However, this region has become less sustainable over time, with
changes of the environmental sustainability indicator from -9.6 ha/ca-
pita in 1982 to −5.6 ha/capita in 2012, due to the declining trend of
per capita biocapacity and the relatively stable trend of per capita
ecological footprint. These results are consistent with findings by
Hopton and White (2012) who analyzed regional environmental sus-
tainability in south Colorado.

5.2. Impacts of climate on demand and supply indicators of natural
resources

The calculated biocapacity and ecological footprint indicators in
each county of the Rio Grande Basin were further used to investigate
impacts of historical climate conditions on natural resources. In the
estimation model, socio-economic variables were not included due to a
possible endogeneity problem. Only climate-related variables were used
in this model, assuming that socio-economic variables are indirectly
included as the function of climate-related variables.

In order to determine the most robust model for further inter-
pretation and predictions, estimation results of per capita biocapacity
and ecological footprint are reported in Table 2 for three model spe-
cifications. Model 1 is defined as the baseline model with no squared
terms of temperature and precipitation and no extreme weather vari-
ables. Model 2 adds squared terms of temperature and precipitation to
the baseline model (without extreme weather variables), while Model 3
includes variables specified in Model 2 plus extreme weather variables.
Results from Model 1 and Model 2 are consistent with outcomes from
Model 3, however, they have a relatively smaller goodness of fit (R2) in
the regression of per capita ecological footprint. These findings suggest
that Model 3 is the most robust model as it is not sensitive to the se-
lection of climate-related variables. For this reason, estimates from
Model 3 were selected for the following simulation analyses to de-
termine potential future changes in environmental sustainability.

As shown in Table 2 (results from Model 3 in column three and
column six), the estimated parameters of the squared mean temperature
are positive, while mean temperature values are negative, suggesting
that temperature has U-shape effects both on per capita environmental
biocapacity and ecological footprint. These findings indicate that both
per capita biocapacity and ecological footprint would decrease to a
certain threshold and then increase as temperature keeps rising. Ac-
cording to the estimated parameters in Table 2, the turning points of the
mean temperature for per capita biocapacity and ecological footprint
were found to be around 11 °C and 16 °C, respectively. With the current
mean temperature of 15 °C (as shown in Table 1), the county-averaged
per capita environmental biocapacity will be 80 ha/capita, which is
higher than the county-averaged per capita ecological footprint (45 ha/
capita), suggesting that the Rio Grande Basin is sustainable at the re-
gional mean temperature.

Furthermore, the estimated results suggest that extreme weather
variables would influence environmental sustainability in the Rio
Grande Basin. For example, precipitation intensity was found to have a
statistically and significantly negative impact on the per capita bioca-
pacity, while the drought index and cold growing season degree-days
both have significantly negative effects on per capita ecological foot-
print. Other extreme climate variables have also been found to affect
environmental sustainability; however, they are statistically insignif-
icant. These results indicate that extreme weather events could reduce
the demand and supply of natural resources, for instance, through their
negative impacts on food production and land use allocations, as has

Table 1
Summary statistics.

Variables Mean Std. Dev. Min Max

Per capita biological capacity 77.04 187.31 0.40 2071.42
Per capita ecological footprint 11.21 12.72 1.16 92.89
Mean temperature (C) 15.00 5.95 −1.86 24.48
Annual precipitation 42.64 18.50 0 124.14
Drought index 0.02 0.14 0 1
Variation of mean temperature 3.11 0.37 2.25 4.6
Precipitation intensity index 0.17 0.11 0 0.59
Degree-days with mean temperature less

than 8 C
602.32 803.58 0 3764.8

Degree-days with mean temperature
higher than 32 C

0.92 4.07 0 75.1

Time trend 15.50 8.66 1 30
Observations 1710

Note: Data cover 58 counties in the Rio Grande Basin from 1982 to 2011.

Fig. 2. Per capita biocapacity and per capita ecological footprint in the Rio
Grande Basin from 1982 to 2012. (Note: The sustainability indicator is defined
as the difference between the per capita ecological footprint and the per capita
biocapacity. Negative values show sustainable conditions, while positive values
indicate unsustainable conditions).
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been confirmed by other studies (IPCC, 2014; Lawler et al., 2014;
Metzger et al., 2006; Mu et al., 2018, 2017).

5.3. Sustainability under future climate scenarios in the Rio Grande Basin

To simulate future demand and supply of environmental resources
(and further environmental sustainability) in the Rio Grande Basin, we
use the estimated parameters from Model 3 in combination with cli-
mate projections from 20 global climate models for two emission sce-
narios, including RCP4.5 and RCP8.5. For this purpose, we first pro-
jected the demand and supply of environmental resources for the
baseline period (1976–2005 average) and then for three future time
scales as follows: early-period (labeled ‘2030’ as the 2010–2039
average), mid-period (labeled ‘2050’ as the 2040–2069 average), and
late-period (labeled ‘2070’ as the 2070–2099 average). The projected
values for all three future time scales were further expressed as the
percent change from the baseline. In a next step, the environmental
sustainability indicator was calculated as the difference between the
predicted demand and supply of environmental resources ( −ef bc) and
expressed as a percent change from the baseline for each future time
scale.

The results show that under future climate projections and emission
scenarios, the per capita environmental capacity is expected to decline,
while the per capita ecological footprint will possibly increase by the
late-period of the 21st century (Fig. 3). The projection results also show
visible variations of climate change impacts across different emission
scenarios and time scales. For example, changes in both per capita
ecological footprint and environmental biocapacity have a larger range
under the high emission scenario (RCP 8.5) than changes under the
medium emission scenario (RCP 4.5). In addition, percent changes in
both per capita ecological footprint and environmental biocapacity are
relatively small in the early-period (i.e., 2030), while they become more
significant in the late-period (i.e., 2070). These findings suggest that
severe changes in temperature, precipitation, and weather extremes in
the high emission scenario by the late-period could more severely affect
the demand and supply of environmental resources than those changes
in the medium emission level scenario by the early-period.

In addition, the Rio Grande Basin is anticipated to become less

sustainable under future climate projections and emission scenarios
(Fig. 4). The left graph in Fig. 4 shows the environmental sustainability
levels across time scales for two emission scenarios, while the right
graph displays the percent changes of environmental sustainability
from the baseline period. Compared to the baseline, the Rio Grande
Basin would be sustainable in most of the analyzed years, with the
sustainability indicator less than zero; however, the region could be-
come less sustainable by the end of the 21st century. More importantly,
the projected results show that the Rio Grande Basin could become
unsustainable under the high emission scenario (i.e., RCP8.5), with the
sustainability indicator greater than zero, due to projected warmer and
dryer climate conditions in this region (Fig. 1). Both graphs in Fig. 4
show a large variability of the projected sustainability in different
emission scenarios and time scales. This suggests high uncertainty of
climate impacts and the importance to consider different emission
scenarios and time scales for climate change impact assessments (Burke
et al., 2015).

In order to determine counties that are most vulnerable to the
projected climate variations, we mapped the geographic distribution of
the sustainability levels across the U.S. Rio Grande Basin for three fu-
ture time scales and two emission scenarios (Fig. 5). The regional
analysis shows that sustainability level changes in most Rio Grande
counties do not vary considerably over time regardless of the emission
scenario. For example, counties in south Texas are projected to remain
unsustainable in both emission scenarios and three time scales. How-
ever, large variations have been found within the same time scale across
the entire Rio Grande region suggesting that some counties might be-
come less sustainable than others in this region. For instance, the Crane,
Crockett, Pecos, Reagan, Reeves, Schleicher, Sutton, and Upton coun-
ties in northwestern Texas are projected to become less sustainable or
even unsustainable. At the same time, the Socorro, Lincoln, and Lea
counties in central and eastern New Mexico are projected to become
more sustainable by the end of the 21st century under the higher
emission scenario.

5.4. Discussion

In summary, this study found that the Rio Grande Basin would most

Table 2
Estimation results of the supply and demand of natural resources.

Variables Per capita biocapacity (supply) Per capita footprint (demand)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Mean temperature, square 0.2860* 0.3931** 0.1820*** 0.2389***
(0.1596) (0.1907) (0.0373) (0.0516)

Mean temperature 1.5067 −5.9552** −8.3967** 0.4723 −4.7536*** −7.7934***
(2.0352) (2.4879) (3.4666) (0.4837) (1.1039) (2.1126)

Annual precipitation, squared −0.0033 −0.0037 0.0007 0.0011*
(0.0031) (0.0034) (0.0006) (0.0005)

Annual precipitation 0.1954 0.5925 0.6856 0.0400 −0.0182 −0.0629
(0.1564) (0.5028) (0.5543) (0.0245) (0.0685) (0.0700)

Trend 0.3511 0.3523 0.3612 0.0858 0.0776 0.0921
(0.3321) (0.3349) (0.3345) (0.0596) (0.0622) (0.0634)

Drought index 2.7549 −2.4343**
(1.9433) (1.1792)

Variation of mean temperature 0.8091 0.2294
(1.4147) (0.7446)

Precipitation intensity index −9.0456* −1.9070
(5.3471) (2.1534)

Degree-days with mean temperature −0.0036 −0.0100***
less than 8 C (0.0092) (0.0037)
Degree-days with mean temperature −0.5124 0.0658
higher than 32 C (0.4794) (0.0635)
Constant −4.9292 21.3249 34.9416 19.1458*** 44.7153*** 79.6575***

(20.5941) (13.8956) (41.6973) (3.5024) (5.3589) (16.2215)
County fixed effects Y Y Y Y Y Y
R2 0.96 0.96 0.96 0.72 0.73 0.74
Observations 1710 1710 1710 1710 1710 1710
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likely remain sustainable under future climate scenarios in the short
term; however, it might become less sustainable or even unsustainable
in the long term. In addition, the projected environmental sustainability
indicator shows large variations due to different climate model pro-
jections, emission scenarios and time scales, with some counties in-
dicating lower sustainability levels and other counties showing higher
sustainability levels under future climate scenarios.

These findings provide valuable information for sustainable re-
source management and allocation of local environmental resources.
They also emphasize the need to protect the capacity of local en-
vironmental resources and to mitigate greenhouse gas emissions from
local economic activities. Understanding changes in environmental
sustainability has important practical implications. In this regard, it is
crucial to develop measures, like regulations, incentive programs, and
tax credits that can promote sustainable development and define

priorities for resource conservation in different sectors, different eco-
nomic activities, and different regions. This could support not only the
environmental but also economic and social aspects of sustainability,
which in turn could promote economic growth in local communities
while fostering resource conservation.

6. Conclusions

This paper presented an integrated approach to predict the condi-
tions and changes in environmental sustainability under future climate
projections for different emission scenarios and time scales. The em-
pirical application of the presented approach suggests that the Rio
Grande Basin has been sustainable and the environmental sustainability
indicator has been affected by historical climate conditions. In addition,
the basin is projected to be moving away from sustainability or even

Fig. 3. Percent changes in per capita ecological footprint and biocapacity under future climate (Note: All values are aggregated across 20 global climate models for all
counties in the Rio Grande Basin).

Fig. 4. Changes in sustainability from
the baseline under future climate
(Note: Values are aggregated across 20
global climate models for all counties
in the Rio Grande Basin; the sustain-
ability indicator is defined as the dif-
ference between the per capita ecolo-
gical footprint and the per capita
biocapacity. Negative values show
sustainable conditions, while positive
values indicate unsustainable condi-
tions).
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become unsustainable under future projected climate scenarios. These
outcomes denote that the rate of natural resource consumption will be
greater than the rate of resource production/provision by local eco-
systems in the U.S. Rio Grande Basin.

A particular strength of the presented integrated approach is that it
includes analyses of climate impacts on the supply and demand of en-
vironmental resources, which has not been found or demonstrated in
the existing sustainability literature before. More importantly, this ap-
proach could be replicated and applied to different spatial scales, in-
cluding local, regional or national analyses, to examine changes in
environmental sustainability under future climate scenarios.

In this specific application, the national/state level data used as a
substitute for the county level data as well as the use of linear inter-
polation for missing data diminish the regional specificity of the ana-
lysis to some degree. The approach and models could be fine-tuned if
local data were available. However, the presented procedure is neces-
sary because the calculated sustainability indicators are indispensable
for the following evaluation of the environmental sustainability trends
under future climate scenarios. On the other hand, however, it needs to
be emphasized that from a policy perspective, information about long-
term trends of environmental sustainability as presented here could be
more meaningful for decision-making processes than specific values,
particularly considering future climate variability.
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