EVALUATION OF HISTORICAL ALLUVIAL CHANNEL CROSSINGS

Prepared by: Jonathan AuBuchon Deanna Wilson

14 February 2024

A HISTORICAL HYPOTHESIS

US Army Corps of Engineers ${ }^{*}$

回
U.S.ARMY

A HISTORICAL HYPOTHESIS

Rio Grande at Albuquerque, NM (08330000)
Sediment samples and ADCP data were collected from the downstream side of Central Bridge as it crosses the Rio Grande.
NOTE: One skipped location due to concrete rip-rap.

Very Coarse Sand (VCS): 1-2 mm Coarse Sand (CS): $1-0.5 \mathrm{~mm}$:
Medium sand (MS): $0.5-0.25 \mathrm{~mm}$
Fine sand (FS): $0.25-0.125 \mathrm{~mm}$ Very fine sand (VFS): $0.125-0.0625 \mathrm{~mm}$
Fines (silts and clays): $<0.0625 \mathrm{~mm}$

A HISTORICAL HYPOTHESIS

HISTORICAL DOCUMENTATION OF MIDDLE RIO GRANDE FLOOD PROTECTION PROJECTS Corrales to San Marcial

K. Lynn Berry and Karen Lewis

US Army Corps of Engineers *

A HISTORICAL HYPOTHESIS

A HISTORICAL HYPOTHESIS

A HISTORICAL HYPOTHESIS

US Army Corps of Engineers ${ }^{\text {® }}$

A HISTORICAL HYPOTHESIS

Q2: Correlation between 2019 issue locations and larger soil particles across Floodway?

Q1:
Correlation between 2019 issue locations and historical alluvial channels?

HYPOTHESIS TESTING

HVDNTHFCIC TFCTINE

- Very Coarse Sand (VCS): 1-2 mm
- Coarse Sand (CS):1-0.5 mm:
- Medium sand (MS): $0.5-0.25 \mathrm{~mm}$
- Fine sand (FS): $0.25-0.125 \mathrm{~mm}$
- Very fine sand (VFS): $0.125-0.0625 \mathrm{~mm}$
- Fines (silts and clays): $<0.0625 \mathrm{~mm}$

US Army Corps of Engineers *

HYPOTHESIS TESTING

US Army Corps

HYPOTHESIS TESTING

Statistic	Riverside Drain	Landside Levee Toe	Levee Centerline	Riverside Levee Toe	River Centerline				
\mathbf{d}_{16}									
Median	VES	Fines	Fines	Fines	Fines				
Tukey's Trimean	VFS	Fines	Fines	Fines	Fines				
Q1/Q3	Fines toFS	Fines	Fines to VFS	Fines to VFS	Fines to FS				
\mathbf{d}_{50}							FS	FS	FS
Median	FS	VFS	FS	FS	FS				
Tukey's Trimean	FS	VFS	FS	FS	VFS to MS				
Q1/Q3	VFS to MS	VFS to FS	VFS to FS	MS					
\mathbf{d}_{54}									
Median	MS	MS	MS	MS	MS				
Tukey's Trimean	MS	MS	MS	MS	MS				
Q1/Q3	MS to CS	MS	MS to CS	MS to CS	MS to VCS				

HYPOTHESIS TESTING

RESULTS

Q1: Correlation between 2019 issue locations and historical alluvial channels?

- Trend: active channel to upland
- 2019 locations: moderate distance to historical channels
- Plots indicate correlation
- Different trend for correlated borehole to historical channels

RESULTS

Q2: Correlation between 2019 issue locations and larger soil particles across Floodway?

TAKE AWAYS

- Observable links between historical channels and groundwater movement is possible
- Potentially better connection if:
- Better morphological description
- Closer stratigraphy information

QUESTIONS

