Surface flow intermittency results in ecological traps for a fish assemblage

THOMAS P.
ARCHDEACON, USFWS
ERIC J. GONZALES, USBR
ASHLEE B. RUDOLPH,
USBR
JEN BACHUS, USBR

Thomas Archdeacon

- ▶ B.S. Ohio Northern University (2002)
- M.Sc. University of Arizona (2007)
- New Mexico Fish & Wildlife Conservation Office (2007)
- Working in fisheries since August 2000
- Primary work in the MRG is silvery minnow augmentation and rescue
- https://www.researchgate.net/profile/Thomas_Archdeacon
- thomas_archdeacon@fws.gov

Background

- Work done in June July 2020 with USFWS and USBR
- ► Lots of data, over-arching theme is looking at the potential effects of pumping (or not pumping) at the south boundary of Bosque del Apache
- ► This presentation covers changes in mesohabitat and fish catch-rates

Background

- Drying and drought are a major disturbance for stream fishes¹
- Water use and climate change are increasing the frequency and duration of intermittency

Fish: refuge use strategies

- Must move to refuge areas prior to disturbance or be trapped within them at the onset of intermittency¹
- Refuge use strategies:
 - Behavioral
 - ▶ Migration²
 - ▶ Physiological
 - Estivation, tolerance to harsh conditions
 - Life-history
 - ▶ Opportunistic, demographic resilience
 - Annual species (African killifishes)

Conservation Importance

- Questions
 - What are refuges for fishes in the MRG during drying
 - How are fish using them
- ► Mhàs
 - ▶ Predict consequences of decreasing surface flow³
 - Understanding how fish persist through drought will help determine appropriate conservation actions

Hypotheses

- Fish move to refuge²
 - Spatial change in fish density
- Fish trapped in proximal habitat⁴
 - ►No spatial change in fish density

Conceptual refuge use: movement to refuge

Conceptual refuge use: Trapped within proximal habitats

Methods

- ▶ Before-After^{5,6} Quasi-experimental design
 - ► Multiple pre-impact samples
 - Sampling immediately before and after impact
 - ► Known, controlled impact

⁵Smokorowski KE, Randall RG (2017) Cautions on using the Before-After-Control-Impact design in environmental effects monitoring programs. FACETS 2:212–232. doi10.1139/facets-2016-0058.

⁶Rytwinski, T., Taylor, J. J., Donaldson, L. A., Britton, J. R., Browne, D. R., Gresswell, R. E., Lintermans, M., Prior, K. A., Pellatt, M. G., Vis, C. & Cooke, S. J. (2019). The effectiveness of non-native fish removal techniques in freshwater ecosystems: a systematic review. Environmental Reviews 27, 71–94.

- Selected 10 random locations between the lowflow conveyance channel and the south boundary pumping station
- Surveys from June 16 July 16, 2020

Methods – Flow Reduction

- ▶ 3 pumps, ~35 cfs (1 m³ s⁻¹)
- ▶ 2 fish surveys, 1 habitat
- ▶ Pumping rate reduction
- Repeat weekly
- ► Fish rescue after last pump
- ▶ 40 total surveys

Methods - Habitat

- *Discharge
- *Temperature (15-min, 6 sites plus 3 LFCC)
- ▶ 10 transects, 11 points, 110 points per site per survey
 - Depth, velocity, categorical mesohabitat (4,400 measurements)
- Estimated surface area of each mesohabitat
- Depth and velocity of each mesohabitat

Methods - Fish

- ▶ 15-20 hauls per site weekly (799 total)
- ► Two pre-impact surveys
- Once for each pumping reduction
- ▶ This presentation:
 - Number of fish caught ÷ proportion of area sampled = total fish
- ▶ Next steps:
 - Mesohabitat specific CPUE x Mesohabitat availabilitytotal fish

Results -Discharge

- Drying imminent at Sites 4-5
- No pumps running:
 - 2 sites with surface flow
 - 4 sites with isolated pools
 - 4 sites completely dry

Results -Temperature

- LFCC thermally buffered
- No buffer 2 miles downstream
- Groundwater buffer at site 3
- Highly variable
- Exceeds 30 °C

Results -Habitat

- Run habitat lost first
- Pool habitat increases
- All habitats decrease

Results -Habitat

- Shallowest transect per site
- Lateral and longitudinal connectivity are reduced
- Behavioral if not physical barriers to fish movement

Reach-Level Site-Level ■ 3 Pumps ▲ 2 Pumps ● 1 Pump ○ 0 Pumps **Total Area Total Area** 5000 5000 2500 2500 10 Run Area Run Area 3000 3000 1500 1500 **Pool Area Pool Area** 2000 2000 1000 1000 **Backwater Area Backwater Area** 500 500 250 250 10 **Isolated Pool Area Isolated Pool Area** 250 250 125 125 Downstream Number of Site Number **Pumps**

Surface Area (m²)

Results -Habitat

- Run habitat decreases
- Pool habitat increases
- All habitats decrease on final pumping reduction

Results - Fish

- ▶ 46 surveys (4 sites had no surface water remaining)
- ▶ 15 species
- ▶ 32,973 individuals
- ▶ 30,268 Red Shiner
- ▶ 2,050 Western Mosquitofish
- ▶ 39 Rio Grande Silvery Minnow (18 in single haul)

40 **All Fish** 20 20 10 1 2 Rio Grande Silvery Minnow 0.2 0.5 0.25 0.1 Estimated Number of Fish (x 1000) 30 **Red Shiner** 20 15 10 0.6 **Common Carp** 0.2 -0.1 -0.3 10 Mosquitofish 5 1.5 **River Carpsucker** 0.15 80 0.075 40 **Pumps** Site ■ 3 Pumps ▲ 2 Pumps ● 1 Pump ○ 0 Pumps

Results -Fish

- Some extreme high outliers
- No decreasing densities at sites that dry vs. increase at sites that had surface flow

Results-Fish

- CPUE = Fish per 1 m² (individual hauls)
- Increases with reduced flow
- Isolated pools and pools have similar CPUE with no pumps
- Fish are trapped and die

Discussion

- Lateral and longitudinal connectivity decreased
- No evidence of long movements to escape drying
- ► E.g. fish make small-scale movements to refuge, which then become isolated and they die
 - ▶ Isolated pools have tens of thousands of fish
 - Initially better than surrounding landscape, then lower survival
 - ► Ecological trap⁸

Discussion – why?

- ▶ No real cues
 - ▶ WQ similar
 - ▶ Low turbidity (not measured) seeking cover
- Behavioral or physical deterrent to move through shallow water
- ▶ Bioenergetics? Fish moving in hot waters?

Conservation implications

- Persistence through drought historically abundant and widespread, opportunistic life-history,
 - Small, short-lived, fecund, early maturity, vagile, demographic resilience
- Already occur in refuges, able to quickly repopulate
 - Not effective when there are few fish (demographic resilience)
 - ► Red Shiners vs. Silvery Minnow
 - ▶ 30,000 vs 39
 - ▶ How to improve Silvery Minnow demographic resilience?

Questions?

- https://www.researchgate.net/profile/Thomas_Archdeacon
- ▶thomas_archdeacon@fws.gov