Tamarisk Leaf Beetle Distribution, Genetic Variation, Defoliation and Mortality Impacts on Tamarisk Habitat along the Rio Grande, NM Watershed

Matthew Johnson, Ecologist, Colorado Plateau Research Station, Northern Arizona University

Levi Jamison, Colorado Plateau Research Station, Northern Arizona University

Flagstaff, AZ

Tamarisk Leaf Beetle (Diorhabda spp.) Monitoring 2011-2019

- 2001, Tamarisk Leaf Beetle limited open releases in Utah and Nevada
- In 2011 started monitoring tamarisk leaf beetles presence throughout the Rio Grande New Mexico watershed

Objectives

- Determine Distribution of Tamarisk Leaf beetles throughout the Rio Grande, NM watershed
 - Track tamarisk defoliation and mortality
 - Determine tamarisk leaf beetle sub-species through genetic analysis

Tamarisk Leaf Beetle Monitoring Methods

- Using standard 38 cm diameter sweep nets conducted twenty-five 1-m sweeps through the tamarisk foliage per sampling location.
- Sweeps occurred on five separate trees, with five sweeps per tree.
- Between every five sweeps the contents of the net were recorded. At each site, sampled at least five locations.
- Counted all tamarisk beetles and larval stages, tamarisk weevils, leafhoppers, ants, lady bugs, and spiders for each set of five sweeps per tree.

Tamarisk Phenology Monitoring Methods

- At each tamarisk tree estimated canopy phenology and the number of tamarisk leaf beetles detected.
- Multi-year data set grouped records according to the tree phenology variables; % dead branches; % flowers; % yellow foliage; % brown/defoliated foliage;
- Calculated the mean number of beetles detected within each percentage grouping (e.g., the mean number of tamarisk leaf beetles with 0% defoliation, 10% defoliation, 20% defoliation, etc.).

Genetic Sampling

- In order to identify the distribution of tamarisk leaf beetle species at the genetic level individual tamarisk leaf beetles were collected and placed in vials with 95% alcohol and kept in a cooler.
- Determined species and possible hybridization at 12 -17 sites between Los Lunas and La Mesa.
- Five specimens were collected at each site.
- Mitochondrial Cytochrome C Oxidase Subunit 1 (CO1). Sequence was used to identify the species designation of the Diorhabda spp.
- Examined tamarisk leaf beetle hybridization using RADseq (Restriction site associated DNA sequencing) analysis.

Rio Grande Tamarisk Leaf Beetle Distribution, 2012, 2013, 2014

Rio Grande Tamarisk Leaf Beetle Distribution, 2015, 2016, 2017

Rio Grande Tamarisk Leaf Beetle Distribution, 2018

Rio Grande Tamarisk Defoliation Rates (2015-2019)

Rio Grande Tamarisk Branch Mortality Rates (2015-2019)

Rio Grande Tamarisk Canopy Flower Rates (2015-2019)

Rio Grande Tamarisk Leaf Beetle May 2019 Distribution and Defoliation Rates

Rio Grande Tamarisk Leaf Beetle August 2019 Distribution and Defoliation Rates

Rio Grande Tamarisk Leaf Beetle September2019 Distribution and Defoliation Rates

Tamarisk Leaf Beetle Species Genetic ID Distribution, 2018

Blue: Northern TLB (D.carinulata); Red: Subtropical TLB (D.sublineata); Green: Mediterranean TLB (D.elongata)

Tamarisk Leaf Beetle Hybridization, 2017

- Habitat changes were evaluated by looking at vegetation:
 - Phenology (defoliation branch mortality, flowering)

Tamarisk Branch Mortality

Mean percentage $(\pm$ SE) of dead branches found in the canopies of tamarisk (Tamarix spp.) trees within the Socorro, NM restoration area, 2016-2018.

Implications of Riparian Restoration: Biocontrol vs. Removal

SWFL Habitat use shifted between 2008 & 2011

SWFL Nest substrate use shifted between 2008 & 2011

Future Tamarisk Leaf Beetle Monitoring

- Tamarisk Leaf Beetle
 Distribution
- Genetic Identification
- Tamarisk Phenology
- Impacts on Avian/Wildlife Communities
- Measure Changes to Native Habitat
- Microclimate (Temp and RH)
- Satellite Imagery (NDVI)

Acknowledgments

- Army Corp of Engineers
- Tetra Tech
- Bosque del Apache NWR
- Bureau of Reclamation