DEVELOPMENT AND APPLICATION OF A HEC-RAS MOBILE-BED SEDIMENT TRANSPORT MODEL OF THE MIDDLE RIO GRANDE

Middle Rio Grande Endangered Species Collaborative Program – 2019 Science Symposium Prepared by Jonathan AuBuchon, PE – Albuquerque District, USACE Ryan Gronewold, PE – Albuquerque District, USACE Stephen Scissons, PE – Albuquerque District, USACE Walt Kuhn, PE – Tetra Tech David Pizzi, PE – Tetra Tech

04 December 2019

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

CONCRE

WHY A SEDIMENT MODEL?

WHY A SEDIMENT MODEL?

East Elevation

S

SW

W

Tt

COCHITI REACH

22.5 River Miles 10 Contributing Tributaries

ALBUQUERQUE REACH

40.5 River Miles 8 Contributing Tributaries

ISLETA REACH

53.0 River Miles6 Contributing Tributaries

SAN ACACIA REACH

56.2 River Miles11 Contributing Tributaries

US Army Corps of Engineers ®

MODES OF SEDIMENT TRANSPORT

US Army Corps of Engineers ®

RIO GRANDE AND TRIBUTARIES PRELIMINARY DATA COLLECTION AND ASSEMBLY (2012)

RIO GRANDE AND TRIBUTARIES TRIBUTARY SEDIMENT YIELD AND DELIVERY STUDY (2013)

US Army Corps of Engineers ®

LIMITATIONS

No simulation of sediment plugs No simulation of width change and vegetation encroachment

MODEL SCENARIOS

Scenario	Cochiti Reach	Albuquerque Reach	Isleta Reach	San Acacia Reach
Calibration	\checkmark	✓	✓	✓
Validation	✓	✓	\checkmark	✓
Baseline	✓	\checkmark	\checkmark	✓
Predictive	5	9	9	14

Value from comparative assessments

Hydrologic inputs and tributary sediment loading are the most influential, so applied boundary conditions are the key determinants of results

SUMMARY OF VALIDATION RESULTS

US Army Corps of Engineers ®

SUMMARY OF VALIDATION RESULTS

US Army Corps of Engineers ®

Scenario	Cochiti Reach	Albuquerque Reach	Isleta Reach	San Acacia Reach
Baseline	Near-equilibrium channel mass Floodplain deposition	Net channel aggradation Floodplain deposition	Net channel degradation upstream; aggradation downstream Floodplain deposition	Net channel aggradation, but downstream influenced by EBR pool levels Floodplain deposition
Selected Predictive (tributary sediment loading; reduced snowpack; EBR pool)	Tributary sediment loading drives sediment supply to Albuquerque Reach Nearly armored bed surface Supply-limited transport	Geomorphic channel response is sensitive to Rio Jemez sediment loading	Rio Puerco and Rio Salado substantially influence downstream portion of this reach	U/S extent of EBR high pool is about RM 97 (~10 mi U/S BdA)

SUMMARY OF REACH RESULTS

Water	VFS	FS	MS	CS	VCS	VFG	FG	MG
Year	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
2003	5.9	15.3	44.4	27.8	4.5	1.6	0.5	0
2004	6.5	17.0	42.4	29.7	3.7	0.6	0.1	0
2005	8.3	19.7	32.9	29.5	6.9	1.7	1.1	0.0
2006	19.1	30.0	35.1	15.8	0	0	0	0
2007	8.4	19.6	40.7	29.0	2.2	0	0	0
2008	8.9	20.7	33.7	31.1	4.9	0.5	0.1	0.0
2009	9.6	21.4	35.9	29.1	3.7	0.2	0.0	0.0
2010	9.5	21.3	34.9	30.5	3.7	0.0	0	0.0
2011	21.4	32.4	33.2	12.9	0	0	0	0
2012	16.7	27.7	37.1	18.5	0	0	0	0
2013	47.3	52.6	0	0	0	0	0	0
2014	11.2	22.0	42.0	24.8	0	0	0	0
2015	8.3	19.2	43.2	27.4	1.8	0	0	0
2016	8.3	19.5	41.8	28.0	2.5	0	0	0
2017	9.1	20.9	32.8	31.1	5.3	0.7	0.2	0.0
AVG.	13.2	24.0	35.4	24.3	2.6	0.3	0.1	0.0

Isleta Diversion Dam: sediment management and RGSM passage

11-

EXAMPLE APPLICATION OF THE MODEL

Tiffany Fire Rehabilitation Planning: targeting of measures

US Army Corps of Engineers ®

POC: JONATHAN AUBUCHON E-MAIL: <u>Jonathan.Aubuchon@usace.army.mil</u> Phone: 505-342-3400

