Interpretive Reports

Groundwater quality in six areas in the California Desert Region (Owens, Antelope, Mojave, Coachella, Colorado River, and Indian Wells) was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.

The six Desert studies were designed to provide a spatially unbiased assessment of the quality of untreated groundwater in parts of the Desert and the Basin and Range hydrogeologic provinces, as well as a statistically consistent basis for comparing groundwater quality to other areas in California and across the Nation. Samples were collected by the USGS from September 2006 through April 2008 from 253 wells in Imperial, Inyo, Kern, Los Angeles, Mono, Riverside, and San Bernardino Counties. Two-hundred wells were selected using a spatially distributed, randomized grid-based method to provide a spatially unbiased representation of the study areas (grid wells), and fifty-three wells were sampled to provide additional insight into groundwater conditions (additional wells).

The status of the current quality of the groundwater resource was assessed based on data from samples analyzed for volatile organic compounds (VOCs), pesticides, and inorganic constituents such as major ions and trace elements. Water-quality data from the California Department of Public Health (CDPH) database also were incorporated in the assessment. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifer systems of the Desert Region, not the treated drinking water delivered to consumers by water purveyors. The primary aquifer systems (hereinafter, primary aquifers) in the six Desert areas are defined as that part of the aquifer corresponding to the perforation intervals of wells listed in the CDPH database.

Relative-concentrations (sample concentration divided by the benchmark concentration) were used as the primary metric for evaluating groundwater quality for those constituents that have Federal and (or) California benchmarks. A relative-concentration (RC) greater than (>) 1.0 indicates a concentration above a benchmark, and an RC less than or equal to (≤) 1.0 indicates a concentration equal to or below a benchmark. Organic and special-interest constituent RCs were classified as “low” (RC ≤ 0.1), “moderate” (0.1 < RC ≤ 1.0), or “high” (RC > 1.0). Inorganic constituent RCs were classified as “low” (RC ≤ 0.5), “moderate” (0.5 < RC ≤ 1.0), or “high” (RC > 1.0). A lower threshold value RC was used to distinguish between low and moderate RCs for organic constituents because these constituents are generally less prevalent and have smaller RCs than inorganic constituents.

Aquifer-scale proportion was used as the primary metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion was defined as the percentage of the area of the primary aquifers with an RC greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifers with moderate and low RCs, respectively. Two statistical approaches—grid-based and spatially weighted—were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable in the Desert Region (within 90 percent confidence intervals).

The status assessment determined that one or more inorganic constituents with health-based benchmarks had high RCs in 35.4 percent of the Desert Region’s primary aquifers, moderate RCs in 27.4 percent, and low RCs in 37.2 percent. The inorganic constituents with health-based benchmarks having the largest high aquifer-scale proportions were arsenic (17.8 percent), boron (11.4 percent), fluoride (8.9 percent), gross-alpha radioactivity (6.6 percent), molybdenum (5.7 percent), strontium (3.7 percent), vanadium (3.6 percent), uranium (3.2 percent), and perchlorate (2.4 percent). Inorganic constituents with non-health-based benchmarks were also detected at high RCs in 18.6 percent and at moderate RCs in 16.0 percent of the Desert Region’s primary aquifers.

In contrast, organic constituents had high RCs in only 0.3 percent of the Desert Region’s primary aquifers, moderate in 2.0 percent, low in 48.0 percent, and were not detected in 49.7 percent of the primary aquifers in the Desert Region. Of 149 organic constituents analyzed for all six study areas, 42 constituents were detected. Six organic constituents, carbon tetrachloride, chloroform, 1,2-dichloropropane, dieldrin, 1,2-dichloroethane, and tetrachloroethene, were found at moderate RCs in one or more of the grid wells. One constituent, N-nitrosodimethylamine, a special-interest VOC, was detected at a high RC in one well. Thirty-nine organic constituents were detected only at low concentrations. Three organic constituents were frequently detected (in more than 10 percent of samples from grid wells): chloroform, simazine, and deethylatrazine.