

Mississippi River Harmful Algal Blooms

Jennifer L. Graham and Rebecca M. Gorney U.S. Geological Survey

Mississippi River Science Forum February 15-16, 2023

Bloomington, Iowa / painted and litho. by J.C. Wild. 1844 Library of Congress Prints and Photographs Division Washington, D.C https://lccn.loc.gov/2012647666

U.S. Department of the Interior U.S. Geological Survey

What is a Harmful Algal Bloom?

- Definition is subjective
- Common definitions
 - High cell densities
 - Dominance by a single or a few species
 - Visible accumulation of algae
- Not all algal blooms are harmful, and not all harmful blooms are toxic

Harmful Algal Bloom and Toxins Science

HABs in the Mississippi River System

- Recurring blooms in Upper Mississippi River navigation pools and backwaters.
- 2011: Kansas River bloom stretches 180 miles
- 2015: **Ohio River** had a bloom that stretched 650 miles; smaller event in 2019
- 2018 & 2020: Upper Illinois River upstream of Starved Rock Dam.
- 2019: **MS gulf coast/MS Sound** extensive beach closures for >60 days.
- Increasing frequency of HABs within Lake Pontchartrain.

September 2015 Bloom Illinois River Starved Rock State Park & Lock and Dam

Early Indicators and Risk Characterization

Real-Time Reporting of Risk of HABs on the Ohio River

- Data driven models based on timelagged average flow exceedances and residence time under low flow conditions.
- Real time prediction probabilities as a component of a risk characterization tool/web application.

From: Development of a Risk Characterization Tool for Harmful Cyanobacteria Blooms on the Ohio River. 2022. Nietch et al. *Water.*

HABs and Cyanotoxins Along the Freshwater to Marine Continuum

- Downstream transport from upstream source areas has been documented but is an understudied phenomena.
- Integrative monitoring strategies across the freshwater-to-marine continuum are needed (e.g., Howard et al, 2022).
- Research and modeling to understand algal and cyanotoxin occurrence and transport are needed.

From Preece et al. 2017: A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. *Harmful Algae*.

Monitoring in the Mississippi River System

- Big Picture: No consistent monitoring approach for HABs in the U.S., especially in rivers.
- Bloom response for Mississippi River is variable, generally event based and state-led, and mostly in the Upper Mississippi River.
- Only 6 sites in Lower Mississippi River have greater than 30 years of water-quality monitoring data.
- USGS Real-Time Water-Quality Monitoring Sites could serve as the backbone of an integrated monitoring network.
 - 7 mainstem stations
 - 6 Mississippi Sound stations

Paradigm Shifts and Unintended Consequences

Eutrophication, harmful algae and biodiversity — Challenging paradigms in CrossMark a world of complex nutrient changes

Patricia M. Glibert

Harmful Algae Volume 91, January 2020, 101590

Review

Harmful algal blooms: A climate change costressor in marine and freshwater ecosystems

Andrew W. Griffith ^{a b}, Christopher J. Gobler ^a 2

Source: Army Corps of Engineers

From https://www.nola.com/news/environment/article_5ed1a994-9c32-11e9-9695-bb42b9b7a073.html

Advocate graphic by DAN SWENSON

Knowledge Gaps

- There are many knowledge gaps about HABs and associated cyanotoxins, particularly in riverine systems, including:
 - Status and trends
 - Environmental fate and transport
 - Environmental drivers
 - Ecosystem effects
 - Exposure and health effects
 - Drinking water and food impacts
 - Mitigation and management

Jessie Garrett collecting CyanoHAB samples. Photograph by Katherine Summers, U.S. Geological Survey

Future Directions and Next Steps

- Continued research to address knowledge gaps
- Integrated monitoring strategies
- Better understanding of risk
- Development of early indicators
- Event response preparedness
- Enhanced public outreach and education

Thank you for the input!

Shawn Giblin, Wisconsin DNR Kathi Jo Jankowski, USGS James Larson, USGS Scott Mize, USGS Jennifer Murphy, USGS Lauren Salvato, UMR Basin Association Sarah Stackpoole, USGS

Questions?

Jennifer Graham jlgraham@usgs.gov

Rebecca Gorney rgorney@usgs.gov

