Sara Schmuecker U.S. Fish & Wildlife Service February 16, 2023

Restoring Habitat and Natural Systems Lessons learned from the Upper Mississippi River

U.S. Fish & Wildlife Service

Working with others to conserve, protect, and enhance fish, wildlife, plants, and their habitats for the continuing benefit of the American people.

Only federal government agency whose primary responsibility is to manage fish and wildlife resources in the public trust for people today and future generations.

Upper Mississippi River Partnerships

"UMRCC works to promote & preserve natural and recreational resources through wise use, conservation, and management."

DEPARTMENT OF NATURAL RESOURCES

Ùpper Mississippi

River Restoration

Leading Innovating Partnering

1. H

A River of Dual Purpose

In 1986, Congress designated the Mississippi River

"...as a nationally significant ecosystem and a nationally significant commercial navigation system...shall be administered and regulated in recognition of its several purposes."

The Mississippi is the only river with such designation.

Water Resources Development Act of 1986, Section 1103(a)(2).

Dual Purpose Challenges & Opportunities

Effects of navigation infrastructure and ongoing operations and channel maintenance

Systemically managing natural resources in highly altered system – rehabilitating versus restoring

Different reaches of the river look and function differently

Dynamic nature of the river

Novel and emerging challenges

Current State of the Science

Resilience

- Ongoing effort (2018 present)
 - Bouska et al. 2018 <u>https://www.ecologyandsociety.org/vol23/iss2/art</u> <u>6/</u>
 - Bouska et al. 2022 https://link.springer.com/article/10.1007/s00267-022-01667-y
- Improve our understanding and management of the UMRS
- Design habitat projects to:
 - Maintain or shift into desired "state" or "regime"
 - Increase resilience
 - Enhance effectiveness

Definition: "...capacity of a system to absorb disturbances and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks." (Holling 1973, Walker et al. 2004, Bouska et al. 2018)

LTRM & HNA-II

Upper Mississippi River Restoration (UMRR) Program's Long-term Resource Monitoring (LTRM)

- Collected 1990s present
- Ecological Status and Trends
 - Houser, J.N., ed., 2022 https://pubs.er.usgs.gov/publication/ofr20221039

Habitat Needs Assessment, 2nd edition (HNA-II)

- Leverages LTRM & other systemic data
- Comprised of 2 parts
 - DeJager et al. 2018 https://pubs.er.usgs.gov/publication/ofr20181143
 - McCain et al. 2018 https://usace.contentdm.oclc.org/utils/getfile/colle ction/p266001coll1/id/8323

Prepared in cooperation with the U.S. Army Corps of Engineers' Upper Mississippi River Restoration Program

Indicators of Ecosystem Structure and Function for the Upper Mississippi River System

DeJager et al. 2018

Open-File Report 2018–1143

U.S. Department of the Interior U.S. Geological Survey

Essential Ecosystem					
Characteristic	Ecosystem Objective	Ecosystem Objective HNA-II Indicator			
(Lubinski & Barko, 2003)	(USACE, 2011)	(De Jager et al, 2018)	(Bouska et al., In Review)		
Hydraulics and Hydrology	A more natural stage hydrograph	Water Surface Elevation Fluctuations (Tailwater and Pool Flux)	Controlling Variable		
	Restored hydraulic connectivity	Lateral (River Fleedalate) Connectivity	Connectivity		
	Increase storage and conveyance of flood water on the floodplain	(Leveed and Open Water Areas)			
	Improved water clarity		Controlling Variable		
Biogeochemistry	Reduce sediment loading	Total Consuded Callda Consultations			
	Water quality conditions sufficient to support native species	Total Suspended Solids Concentrations			
Geomorphology	Restore sediment transport regime	Codimentation in Off Channel Areas	Long-term Successional Processes		
	Restore bathymetric diversity	Sedimentation in Off-Channel Areas			
	Restore floodplain topographic diversity	Floodplain Functional Class	Diversity and Redundancy		
	Restore lateral hydraulic connectivity	Lateral (River-Floodplain) Connectivity (Leveed and Open Water Areas)	Connectivity		
		Floodplain Functional Class	Diversity and Redundancy		
Habitat	Restore habitat connectivity	Longitudinal Floodplain Connectivity (Natural Area)	Connectivity		
	Restore riparian/floodplain habitat	Floodplain Functional Class	Diversity and Redundancy		
		Floodplain Vegetation Diversity			
		Floodplain Forest Succession	Long-term successional processes		
		Aquatic Functional Classes (1 & 2)	Diversity and Redundancy		
	Restore aquatic off-channel areas	Sedimentation in Off-Channel Areas	Long-term Successional Processes		
	Restore channel areas (including side channels	Aquatic Functional Classes (1 & 2)	Diversity and Redundancy		
	Restore native aquatic vegetation	Aquatic Vegetation Diversity	Diversity and Redundancy		
	Restore a floodplain corridor	Longitudinal Floodplain Connectivity (Natural Area)	Connectivity		
· · · · · · · · · · · · · · · · · · ·	Restore floodplain wetlands (including floodplain lakes)	Floodplain Vegetation Diversity	Vegetation Diversity Diversity and Redundancy		

McCain et al. 2018, DeJager et al. 2018

HNA-II Indicators Report

- Identified quantitative measures (indicators) of ecosystem structure and function.
- Clustered pools together based on similar ecological • attributes.
- Provided current indicator status by pool and cluster.

2018

HNA-II Linking Science to Management Perspectives

2018

 Combined quantitative data with qualitative assessments

- Prioritized future actions by indicator importance
- Identified desired future conditions

Upper Mississippi River Restoration Program Habitat Needs Assessment-II: Linking Science to Management Perspectives

> Kathryn N.S. McCain¹, Sara Schmuecker², and Nathan R. De Jager¹

- ⁴U.S. Army Corps of Engineer
- ¹U.S. Fish and Wildlife Service
- ¹U.S. Geological Survey

HNA-II Linking Science to Management Perspectives

Upper Impounded*	Middle Impounded ⁸	Poo 15"	Lower Impounded ^a	Open River ^c	Upper Illinois [®]	Lower Illinois ⁸	
Aquatic Functional Class (AFC1)	Aq Veg	Aq Veg	Open Water	AFC1	Aq Veg	TSS	Hig
Aquatic Functional Class 2 (AFC2)	FP Fxnal Class	FP Veg	AFC1	AFC2	FP Veg	FP Veg	
Floodplain Functional Class Diversity (FP Fxnal Class)	AFC1	FP Fxnal Class	AFC2	FP Fxnal Class	FP Fxnal Class	FP Fixnal Class	2
Floodplain Vegetation Diversity (FP Veg)	AFC2	TSS	FP Fxnal Class	FP Veg	AFC1	AFC1	
Aquatic Vegetation Diversity (Aq Veg)	FP Veg	Nat Area	FP Veg	Open Water	AFC2	AFC2	
Longitudinal Connectivity - Natural Area (Nat Area)	Nat Area	AFC1	Aq Veg	Leveed Area	TSS	Leveed Area	1
Total Suspended Solids Concentrations (TSS)	Open Water	AFC2	Leveed Area	Nat Area	TW Flux	Aq Veg	
Lateral Connectivity – Open Water (Open Water)	TSS	TW Flux	Nat Area	Aq Veg	Nat Area	Open Water	
Pool Flux Difference (Pool Flux)	TW Flux	Open Water	TSS	% Time	Leveed Area	TW Flux	
Tailwater Flux Difference (TW Flux)	Pool Flux	Leveed Area	TW Flux	TW Flux	Open Water	Pool Flux	-
Lateral Connectivity – Leveed Area (Leveed Area)	Leveed Area	Pool Flux	Pool Flux	TSS	Pool Flux	Nat Area	LO
% Time Gates Open (% Time)	% Time	% Time	% Time	Pool Flux (n/a)	% Time	% Time	

McCain et al. 2018

HNA-II

Linking Science to Management Perspectives

	Desired Future Conditions as Identified by the River Teams			
Upper Impounded	 Improve function and diversity of aquatic habitat types by improving quality, depth and distribution of lotic and lentic habitats Maintain and enhance aquatic vegetation diversity Maintain and enhance floodplain vegetation diversity, including hard-mast trees Restore floodplain topographic diversity and diversify inundation periods 			
Middle Impounded	 Maintain and enhance aquatic vegetation diversity Restore floodplain topographic diversity and diversify inundation periods Restore function and diversity of aquatic habitat types by improving quality, depth and distribution of lotic and lentic habitats Restore, maintain and enhance floodplain vegetation diversity, including hard-mast (nut-producing) trees 			
Pool 15	Maintain and enhance aquatic vegetation diversity			
Lower Impounded	 Improve open water connectivity conditions, including island restoration Restore function and diversity of aquatic habitat types by improving quality, depth and distribution of lotic and lentic habitats Restore, maintain and enhance floodplain vegetation diversity, including hard-mast (nu producing) trees 			
Open River	 Restore function and diversity of aquatic habitat types by improving quality, depth and distribution of lotic and lentic habitats Restore floodplain topographic diversity (including ridge and swale) and diversify inundation periods to mimic pre-dam conditions Restore, maintain and enhance floodplain vegetation diversity, including hard-mast (nut-producing) trees 			
Upper Illinois	 Maintain, enhance and restore aquatic vegetation diversity Restore floodplain topographic diversity and diversify inundation periods Restore, maintain and enhance floodplain vegetation diversity, including hard-mast (nut-producing) trees, where feasible 			
Lower Illinois	 Reduce sedimentation and total suspended solids concentrations Restore, maintain and enhance floodplain vegetation diversity, including hard-mast (nut-producing) trees Restore floodplain topographic diversity and diversify inundation periods 			

Other Existing Plans

- Upper Mississippi River National Wildlife and Fish Refuge Habitat Management Plan (USFWS, 2019)
- A Strategic Plan for the Upper Mississippi River Restoration Program (USACE, 2015)
- Upper Mississippi River Systemic Forest Stewardship Plan (USACE, 2012)
- Upper Mississippi River System Ecosystem Restoration Objectives (USACE, 2009/2011)
- UMR National Wildlife and Fish Refuge Comprehensive Conservation Plan (USFWS, 2006)
- Final Integrated Feasibility Report and Programmatic Environmental Impact Statement for the UMR-IWW System Navigation Feasibility Study (2004, NESP)
- State Wildlife Action, Management & Strategic Plans
- Mississippi River Environmental Pool Plans (River Teams)
- Master Plans (USACE)
- Among others....

Data Gaps & Areas of Concern

Data and Science Gaps

- All of the Data and Science information needs identified in previous presentation (J. Houser)
- HNA-II Recommendations (McCain et al. 2018)
 - Develop and validate species or community-habitat models
 - Refine data layers for project-scale application and improve indicator understanding
 - Develop more specific restoration habitat objectives
 - Refine hydrologic models
 - Improve system-wide data
 - Develop model(s) to forecast future habitat conditions

Concerns

- Policy and landownership/management constraints limiting where restoration can occur on the landscape
- Ability to successfully detect and respond to emerging and future threats, such as
 - Climate change
 - Invasive species

Next Steps and Resources Needed

Moving Forward

Where & How Much?

- Continue to build on existing knowledge of the system (resilience, HNA-II) to inform what kind of work, where, and how much is necessary to achieve our desired conditions
- Continue to work towards resolving project implementation challenges, where present

Beneficial Use of Dredged Material

- Reduce impacts through seeking alternative solutions
- Work through barriers to make use of dredged material for environmental benefit a regular practice

Refine Management Toolbox

- Investigate how to achieve optimum results while minimizing negative impacts
- Continue to apply lessons learned to UMRR Environmental Design Handbook
- Monitor and learn from management installments

Natural Solutions

- Identify more natural material and environmentally friendly solutions
- Strive for solutions with low operation and maintenance needs

Build in Resilience to Climate Change and Future Threats

- Continue to build on existing knowledge of the system to inform long-term management and sustainability
- Increase our capabilities for early identification and response to emerging threats

Looking Ahead

By Jon Platek - Base map used was taken from the National Atlas, watershed map was from this site from the United States Geological Survey. The picture of the steamboat Robert E. Lee was from this file, which is public domain due to its age. The remaining work was done by the uploader., CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=9412752